A LiveCoMS Training Article

This LiveCoMS document is
maintained online on
GitHub at https://github.
com/anandojha/
SEEKR _tutorials; to
provide feedback,
suggestions, or help
improve it, please visit the
GitHub repository and
participate via the issue
tracker.

This version dated February
15,2024

An Introductory Tutorial to the
SEEKR2 (Simulation Enabled
Estimation of Kinetic Rates v. 2)
Multiscale Milestoning Software
[Article v1.0]

Anupam Anand Ojha’*, Lane William Votapka', Gary Alexander Huber', Shang
Gao', Rommie Elizabeth Amaro?”

"Department of Chemistry and Biochemistry, University of California San Diego, La Jolla,
California, 92093, United States; 2Department of Molecular Biology, University of
California San Diego, La Jolla, California, 92093, United States

Abstract

SEEKR2 (Simulation enabled estimation of kinetic rates v. 2) is a powerful and versatile software
tool designed to computationally estimate the kinetics and thermodynamics of complex molecu-
lar processes, particularly emphasizing the process of receptor-ligand binding and unbinding. We
present a suite of tutorials for the SEEKR2 (Simulation enabled estimation of kinetic rates v. 2)
multiscale milestoning software. This tutorial presents a comprehensive guide for users offering
the best practices for preparing, executing, and analyzing molecular dynamics (MD) and Brown-
ian dynamics (BD) simulations using SEEKR2. This tutorial highlights the advancements presented
in SEEKR2 - the latest iteration within the SEEKR programs, including significant improvements in
speed and capabilities compared to its earlier versions. SEEKR2 now supports both NAMD and
OpenMM simulation engines, providing users with more flexibility in their simulation setups. Addi-
tionally, the BD component has been upgraded to the Browndye2 engine, enhancing the accuracy
and efficiency of simulations. This tutorial aims to guide users to install SEEKR2, run MD and BD
simulations within the framework of the SEEKR2 program, and analyze and interpret the kinetics
and thermodynamics of binding and unbinding of model host-guest systems, thereby demonstrat-
ing its ease of usability and extensible features that allow for future expansions of the method.
This tutorial equips users with the necessary knowledge to effectively prepare, execute, and ana-
lyze simulations using SEEKR2. By following the best practices outlined in the tutorial, users can
leverage the power of the SEEKR2 program to gain insights into complex molecular processes and
accelerate their understanding of key biomolecular interactions.

*For correspondence:
aaojha@ucsd.edu (AAO); ramaroQucsd.edu (REA)

Received: August 31, 2023
Accepted: January 27, 2024

10f24 https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://github.com/anandojha/SEEKR_tutorials
https://github.com/anandojha/SEEKR_tutorials
https://github.com/anandojha/SEEKR_tutorials
aaojha@ucsd.edu
ramaro@ucsd.edu
https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

TUTORIAL OUTLINE

Section 1: Introduction

O Scope of tutorials
O Learning outcomes

Section 2: Prerequisites

O Background knowledge and experience
O Software and hardware requirements

Section 3: Background and Theory

O Brownian dynamics
O Markovian milestoning with Voronoi tessellations
O The SEEKR2 framework

Section 4: SEEKR2 Installation

O Creating a new conda environment
O Installing SEEKR2 dependencies

O Installing Browndye

O Conda installation of SEEKR2

O Installing SEEKR2 from source

Section 5: SEEKR2 tutorials

O Basic Tutorial: g-cyclodextrin (host)-guest complexes
O Advanced Tutorial: Trypsin-benzamidine complex

Section 6: SEEKR2 benchmarking

O Benchmarking on host-guest and trypsin benzami-
dine complexes

Section 7: Conclusion

1 Introduction

Significant progress has been made in computational
biophysics since the 1970s with the advent of powerful com-
puters and the development of molecular dynamics (MD)
simulations and other computational techniques, enabling
researchers to understand complex biological processes at
the atomic level. Capitalizing on large-scale MD simulations
and advanced computational approaches, this field pro-
vides useful perspectives into the molecular complexities
of biological entities. From visualizing MD in real-time to
predicting protein structures and drug-receptor interactions,
the tools at our disposal have expanded precipitously.
Techniques such as enhanced MD dynamics sampling and
multiscale modeling emphasize the extent of its capabilities
[1-8]. Such advancements not only elucidate kinetic and
thermodynamic properties of interest in complex systems
but also pave the way for transformative drug design and

molecular biology breakthroughs [1, 9]. Among the recent
advances, SEEKR2 (Simulation enabled estimation of kinetic
rates v. 2) has emerged as a powerful tool to compute the ki-
netics and thermodynamics of complex biological processes,
such as receptor-ligand binding and unbinding [10-14].
SEEKR2 is a multiscale simulation method that combines MD
and Brownian dynamics (BD) simulations to compute the
receptor-ligand binding (kon) and unbinding (k) rates while
providing valuable insights into the underlying mechanisms.
SEEKR2 has numerous capabilities for predicting the kinetics
and thermodynamics of molecular processes, even beyond
predicting binding/unbinding kinetics. The SEEKR framework
could be used to characterize membrane permeability or
protein-protein association/dissociation. In short, the SEEKR
program is capable of modeling any process that can be
modeled with either MD or BD simulations in a reason-
able amount of time and where a collective variable can
adequately represent that process. SEEKR2 cannot model
processes that are beyond the scope of MD or BD simula-
tions. This includes processes like the breaking or forming
of covalent bonds, as Quantum Mechanics/Molecular Me-
chanics (QM/MM) simulations are not currently integrated
into OpenMM, which SEEKR relies on. This program requires
a suitable collective variable based on atomic positions to
describe the process it models. Therefore, it may not be
useful for modeling certain phenomena, such as solvation
energies, where such a collective variable is not applicable.
While SEEKR2 offers relatively accurate kinetic estimates,
this comes at the cost of computational efficiency. For
example, modeling the binding/unbinding kinetics of a
drug-like molecule to a target protein can take several days,
even with access to advanced GPU clusters.

1.1 Scope of tutorials

This tutorial aims to provide a comprehensive understand-
ing of the SEEKR2 multiscale milestoning software with
detailed instructions to install the software, step-by-step in-
structions to set up SEEKR2 simulations, analyze the results,
and interpret the kinetic and thermodynamic quantities
obtained from simulations. Clear instructions and exam-
ples ensure users quickly adapt the tutorial and apply the
SEEKR2 framework to their specific systems of interest. The
authors expect this tutorial to serve as a practical guide for
researchers interested in using this method to investigate
receptor-ligand binding and unbinding kinetics. This tutorial
is designed to be thorough and engaging, with an estimated
completion time of approximately 4-6 hours. We encourage
users to plan their learning sessions according to their
availability and pace, as completing the tutorial in a single
session may be challenging.

2of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

1.2 Learning outcomes
Upon completion of the tutorial, readers should be able to:

+ Conceptualize SEEKR2 framework

- Understand the underlying theory behind the
SEEKR2 framework.

- Understand the multiscale nature of SEEKR2 sim-
ulations, i.e., MD and BD simulations within the
SEEKR2 framework.

+ Setup and Installation

- Install necessary dependencies for SEEKR2 instal-
lation.

- Install the SEEKR2 package either by conda instal-
lation or directly from source.

- Identify key configuration files and their purposes.

* Run SEEKR2 simulations

- Hands-on experience with SEEKR2 simulations
for the host-guest and trypsin-benzamidine
complexes.

- Walk through the three stages of SEEKR2 calcula-
tions for each complex, i.e., prepare, run, and ana-
lyze.

- Outline the key steps and procedures involved in
each stage.

- Use SEEKR2 commands to initiate and monitor
simulations.

* Post-SEEKR2 simulation analysis and troubleshoot-
ing
- Analyze and interpret free energy profiles gener-
ated from SEEKR2 simulations.
- Troubleshoot common issues that may arise dur-
ing SEEKR2 simulations, utilizing the documenta-
tion and community resources effectively.

2 Prerequisites

2.1 Background knowledge and experience

To ensure a successful installation and effective utilization
of the SEEKR2 software, users are recommended to possess
foundational knowledge in several key areas. Familiarity with
the following topics prior to proceeding with the installation
and utilization of SEEKR2 will greatly facilitate the process
and enhance the ability of users to harness the full potential
of SEEKR2:

* Linux: SEEKR2 runs on Linux machines, necessitating a
working knowledge of Linux commands. Users should
be comfortable navigating the Linux file systems,

executing commands with the Linux environment, and
managing files using the terminal interface.

+ Anaconda: Experience with Anaconda, a popular pack-
age manager and environment management system, is
required for installing SEEKR2. Users should be familiar
with creating new conda environments, managing and
installing conda packages, and activating or deactivat-
ing environments as necessary.

+ MD simulations using OpenMM: Prior experience in

running MD simulations using the OpenMM engine is

crucial for effectively utilizing SEEKR2. Users should
have a substantial understanding of MD simulation
principles, such as force fields, integrators, and sim-
ulation parameters and their implementation in the

OpenMM simulation engine [15].

Force field parameterization using Amber: It is

beneficial for users to be familiar with AmberTools,

especially with Amber’'s antechamber and LEaP pro-
grams for force field parameterization and system
preparation, respectively. LEaP is essential for system
preparation, including solvation, ion addition, and
force field assignment, while the antechamber pro-
gram is employed for parameterizing small molecules.

Familiarity with these tools ensures smooth integration

into the SEEKR2 workflow [16, 17].

Research collaboratory for structural bioinformat-

ics (RCSB) protein data bank: To initiate a SEEKR2

simulation, users need a Protein Data Bank (PDB) file,
which can be obtained from the RCSB Protein Data

Bank (https://www.rcsb.org). Users should be familiar

with searching for specific PDB files and downloading

them from the database for use in SEEKR2 simulations.

Alternatively, one may obtain structures or systems

already prepared for simulation from collaborators or

a previous study.

2.2 Software and hardware requirements

Using Anaconda or Miniconda to install SEEKR2 is recom-
mended because their package and environment manage-
ment capabilities ensure easy installation and compatibility.
Users can either install from the conda-forge channel or
manually install SEEKR2 from the source code, but the latter
approach can be more time-consuming and error-prone.
MD simulations in the SEEKR2 framework are run using the
OpenMM or the Nanoscale Molecular Dynamics (NAMD)
simulation engines. The OpenMM engine can be installed
simultaneously during the conda installation of the SEEKR2
OpenMM plugin when users select to install the SEEKR2
package through conda-forge. OpenMM must be installed
from source (See section 4.5.1) when users opt to install

3o0of24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://www.rcsb.org
https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

SEEKR2 from the source code. Alternatively, if OpenMM
is not available or preferred, users can opt for the NAMD
simulation engine. NAMD is a parallel MD code commonly
accessible on computing clusters and supercomputers. It
should be noted that although NAMD is a viable option for
basic applications, not all SEEKR2 functionalities may be
supported. Instructions for NAMD installation can be found
at https://www.ks.uiuc.edu/Research/namd/.

Users may want to use a GPU-enabled machine to
achieve higher-speed OpenMM simulations through
the SEEKR2 framework. Following the instructions at
https://developer.nvidia.com/cuda-toolkit or https://docs.nvidia.
com/cuda/cuda-installation-guide-linux/index.html is highly rec-
ommended to download and install CUDA. Browndye2 must
be installed for kon calculations using BD simulations. Please
refer to section 4.3 for instructions to install Browndye?2.

To execute SEEKR2 simulations, users must have access to a
Linux-based machine. Simulations can be carried out with
just one processor, though this will be very slow for systems
of interest in biomedical research and drug discovery. A GPU
device or cluster is recommended for optimal performance
of MD engines. When working with large receptor-ligand
complexes, faster processors and greater memory capacity
may be required to implement SEEKR2 calculations suc-
cessfully. Users are advised to run the simulations while
monitoring the resource usage to estimate the necessary
storage and memory. Employing multiple processors for
SEEKR2 simulations is recommended for BD simulations,
where multiple processors can be utilized. When the NAMD
simulation engine is used, employing multiple CPU proces-
sors will also accelerate the calculations. However, when
using OpenMM, increasing the number of CPU processors
may not lead to faster simulation speeds because the
majority of the calculation is performed on the GPU, so the
CPU is not likely to be a bottleneck.

3 Background and Theory

3.1 Brownian dynamics

To compute the association rate constant (kon) for receptor-
ligand complexes, we must use BD. BD simulations are
computationally less expensive as compared to MD simu-
lations due to implicit solvent and approximations such as
the often-used rigid body approximation. Moreover, the
encounter-based approach focuses on the initial stages
of the binding process when the ligand is far from the
receptor-binding site, and the approximations in BD suffice
as a physical description. Explicit electrostatic interactions
are considered between the protein and the ligand, which is
particularly important for receptor-ligand complexes where

electrostatic forces play a significant role in molecular recog-
nition and binding. Browndye [18] is a software package that
runs the BD simulations to compute the second-order rate
constants for encountering two molecules using a simplified
physical model.

Brownian dynamics describes motion at a mesoscopic level,
in which models of large molecules are usually simplified to
smaller collections of rigid bodies, and the solvent is treated
using continuum theories [19] instead of explicitly with indi-
vidual molecules. Arecent review summarizes theoretical de-
tails, common methods and software, and some of the most
recent applications of BD [20]. Considering Newton's equa-
tions of motion and assuming a separation between the time
scales of the macromolecules and the solvent molecules, one
can derive the following stochastic differential equation of
motion [21]:

dx = -(kgT)'D - VVdt +V/2dtD - W)

where V is the potential energy of the system and the vec-
tor, X represents the state variables, such as positions and
orientations of the solute molecules (solvent molecules are
not typically explicitly included). The matrix, D (generalized
diffusivity), represents the dynamic effects of the solvent, i.e.,
the hydrodynamic damping caused by motion through a fluid
and the addition of thermal energy. The vector, W of uncorre-
lated random numbers following a unit Gaussian distribution
gives stochastic effects. It is worth noting that the presence
of the temperature, along with Boltzmann’s constant, affects
the thermal fluctuations. Like the MD models, there exists
a force term (the gradient of the potential energy) in the BD
model with components that include intermolecular electro-
statics and also the averaged effects of the solvent, such as
hydrophobic and solvent dielectric effects. As an example of
the latter, the Browndye2 engine uses the software package
APBS (Adaptive Poisson-Boltzmann Solver) to compute the
electric field around a macromolecule, given the bulk proper-
ties of the solvent and dissolved ions [22]. Because BD sim-
ulations encompass several approximations from MD simu-
lations, the number of variables is significantly reduced, and
the time step dt can be in orders of magnitude larger than
that used in MD simulations. In the case of the receptor-
ligand complexes presented in this tutorial, both the receptor
and the ligand are treated as rigid bodies at the BD level.

Given the simplifications and speedup of using BD simu-
lations, it is possible to generate elongated trajectories of
the ligand in the space around the receptor to estimate
the association rate. Browndye2 uses the Luty-McCammon-
Zhou algorithm (Figure 1) [23] (a variation of the earlier
Northrup-Allison-McCammon algorithm [24]), which gener-
ates multiple trajectories, each of which ends either in an

4 0of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://www.ks.uiuc.edu/Research/namd/
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

Figure 1.

Computation of association rate using the Luty-
McCammon-Zhou method

encounter with the receptor, or an escape. The ligand is
started on a sphere surrounding the receptor and moves
until it either reaches a final encounter with the receptor or
reaches another sphere, larger and concentric with the first.
If it reaches this second sphere, it either escapes, ending the
trajectory, or it is placed back on the first sphere to continue
the trajectory. The probability of the escape versus continu-
ing from the inner sphere depends on several factors, such
as the diameters of the spheres, the total charge on each
system (ligand and the receptor), and the ionic strength of
the solvent. Ultimately, the second-order association rate
constant is computed from the proportion of encounters
to escapes, and therefore a large number of trajectories
are required to estimate that probability precisely. When
used with SEEKR2, the encounter complex is defined as the
ligand reaching the outermost milestone that encompasses
the MD region. The milestoning calculations, with their
parameters computed from the MD simulations, convert
this initial rate constant into the final rate constant estimate,
which accounts for the atomic details in the binding site, as
described in section 3.2 and 3.3.

3.2 Markovian milestoning with Voronoi
tessellations
Milestoning is a phase-space splitting strategy for enhanced

MD sampling. For a thorough understanding of the mileston-
ing theory, readers are advised to refer to the key papers by

Elber and coworkers [25-27]. A series of mathematical equa-
tions are employed in the SEEKR2 milestoning methodology
for calculating the mean first passage time (MFPT) and free
energy related to binding for each milestone (AG;). This tu-
torial recognizes the value of revisiting essential equations
from our earlier works. Previous SEEKR2 publications employ
the following mathematical representations[2, 3, 12, 28]. For
the sake of comprehensiveness and to ensure this tutorial re-
mains a self-contained resource, we have chosen to present
these equations again.

Let us begin by segmenting the phase configuration of a
bimolecular complex into N distinct milestones. The transi-
tions between milestones is described in the transition rate
matrix, Q, of size N x N, which represents the fluxes across
milestones, as shown in equation 2. The matrix Q consists
of diagonal elements, g;;, and off-diagonal elements, gj;.

911 d12 - Q1N
921 922 - QonN

=1 . . . (2)
ana Aan2 0 NN

Given the number of transitions between milestones i and j
as Nj;, with the ™" milestone as the last milestone the trajec-
tory has interacted with, and R; represents the duration the
trajectory has spent in the particular milestone, the expres-
sions for g; and g; are given by equations 3 and 4 respec-
tively.

g = - E qjj 3)
Iz
MR 70
_)w fR7
j=4 F (4)
Y0 =0

For a trajectory within the Voronoi cell, V4, its position and
velocity vectors are denoted as x, and v, respectively. The
position and velocity of this trajectory at time, t + At, as es-
timated by the integrator algorithm (Langevin integrator, at
most times), are given by x,* and v,*. Equations 5 and 6
enforce reflective boundaries to ensure trajectories are con-
fined to their respective Voronoi cells.

Xt ifxa* eV,
Xa(t+A8={"" coo (5)
Xa(t) otherwise

Vot + AL) = Vo™ if Xa™ € Vo ©)
-Va(t) otherwise
The equilibrium probabilities of Voronoi cells Vo and V4 are
represented by 7o and wg respectively, with the total simula-
tion time within these cells given by T, and Tg. A dimension-
consistent normalization factor, T, is given by equation 7.

5of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

n -1
S
a=1

If Njj denotes the number of collisions with the /" milestone
after last visiting the /" milestone (in this context, both the i
and /™ milestone are edges to anchor «), the total transitions
between the i™ and jth milestones, Ny, is given by equation
8, as formulated in the original Markovian milestoning with
Voronoi tesselations (MMVT) theory. [25]

n Ni?
Nj=TY mazl ®)
a=1

Given R;“ represents the time a trajectory spends in Voronoi
cell V,, after its last interaction with the j/th milestone, the ag-
gregate time post the last interaction with the ™ milestone,
Ri, is given by equation 9.

n Rq
- I
Ri=T ; T g 9)

To compute the stationary probabilities 7, one must consider
both N, s (number of collisions in Voronoi cell V,, that occur
at its boundary shared with Vg) and N, (number of colli-
sions in V3 at its shared boundary with V,,), as given by equa-
tions 10 and 11.

n

> s Nf'a =

=187 A

n
>

B=1,p7cx

n
S =1 (1)
a=1

(10)

Consider (A) as the matrix of size N-1 by N-1 extracted from the
upper left portion of Q. The rationale behind selecting the up-
per left section of the matrix Q while omitting the last column
and row is to establish a “sink state" required to compute a ki-
netic quantity. By excluding the final column and row from Q,
we effectively designate the state denoted by that particular
row and column as the sink state. The vector 1 represents a
vector of ones, the mean free passage times from each mile-
stone, TV, can be determined by solving equation 12.

GTN =1 (12)

The stationary probabilities of the milestones, p, are
obtained by solving equation 13.

Qp=p (13)

The stationary probabilities for the ™ milestone and the ref-
erence milestone are represented by p; and p,, respectively.
Using these parameters, the free energy landscape for the it

milestone, AG;, is given by equation 14, where kg stands for
Boltzmann's constant and T designates the temperature.

AG; = -kgTn <&> (14)

ref

3.3 The SEEKR2 workflow

Let us consider the case of a model receptor-ligand complex
to understand the steps involved in the SEEKR2 workflow. Ini-
tially, a structural (PDB) file containing the receptor protein
and the ligand in an explicit solvent is provided as an input

file (Figure 2a).
B <<-°Iigand

receptor

(b) Define a distance variable between
the binding site and the ligand

(a) Provide a receptor and a ligand

BD region BD region
® ©

(c) Use the distance variable to define
the molecular dynamics (MD) and
Brownian dynamics (BD) region

(d) Subdivide the MD further
(milestoning)

(f) Analysis with milestoning theory
to obtain kinetic and
thermodynamic properties

(e) Independent MD and BD
simulation in each region

Figure 2. Different stages of the SEEKR2 simulation framework

6 of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

Energy (kcal/mol)

5

2.00
18
State B
12
050
025 -12
0.00

100 075 050 025 000 025 050 075 100
x (nm)

(a) Two states of a Muller potential energy system

200
175
State B
150
125 \
=100 N
3 8
=
- N
0.75 &
S,
S
%
050
025
0.00

—100 -075 050 025 000 025 050 075 100
x (nm)

18

12

Energy (kcal/mol)

(b) Define a distance variable between the state A
and B

State B

Energy (kcal/mol)

oo 075 ds0 025 o0do o5 o030 o075 100
) - x (nm) .

(c) Define anchor points based on the distance

variable

State B

Energy (kcal/mol)

State A 18

~100 075 -050 -025 000 025 050 075 100
x (nm)

(d) Define milestones based on the anchor points

Figure 3. A MMVT model of a simple Muller potential system within
the SEEKR2 framework

A LiveCoMS Training Article

We then identify the ligand in the PDB file through its atom
indices. Once the ligand and the receptor protein are iden-
tified, we define a collective variable (CV). In most cases, for
receptor-ligand binding and unbinding processes, we choose
the CV to be the distance between the center of mass (COM)
of a-carbon atoms at the binding site of the receptor and the
COM of the heavy atoms of the ligand (Figure 2b).

Atomistic simulation details are required for receptor-ligand
complexes when the ligand is close to the binding site, and
conformational changes in the receptor are observed as the
ligand slowly unbinds. In cases where the ligand is far from
the receptor-ligand binding site, these two entities can be
treated as point charges. Hence, BD is employed beyond a
cut-off distance defined by the user. Therefore, the phase
space of the receptor-ligand complex is comprised of the MD
region and the BD region (Figure 2c). We further subdivide
the MD region into milestones based on a pre-defined CV.
In one dimension, these milestones are concentric spheres
with radii based on the increasing distance between the COM
of the receptor-ligand binding site and the ligand (Figure 2d).
Independent MD and BD simulations are performed with
reflective boundary conditions imposed within the MD
Voronoi cells (Figure 2e). Once the simulation finishes, we
can use milestoning theory to obtain the receptor-ligand
unbinding rate (ko) and the addition of BD theory to obtain
the receptor-ligand binding rate (kon) (Figure 2f). Thermo-
dynamic parameters can then be obtained from the kinetic
rates, kon and Kog.

To further understand the process of milestoning employed
in the SEEKR2 framework, let us consider a system exhibiting
a simple Muller potential, where an energy barrier exists
between the two equilibrium states, A and B (Figure 3a). Let
us define a CV as a distance variable that approximately
describes the transition from state A to state B (Figure 3b).
Anchor points are placed equidistant along the distance vari-
able, constituting the points of a one-dimensional Voronoi
tesselation (Figure 3c). Once the anchor points are defined,
milestones are placed between the anchor points (Figure
3d). Independent and parallel MD simulations are run in the
region defined by two successive milestones with reflective
boundary conditions.

4 SEEKR2 Installation

Before proceeding with the SEEKR2 installation, we assume
that the user has a working knowledge of Linux and has suc-
cessfully installed the Anaconda or Miniconda distribution
in the system. This tutorial also assumes the user possesses
a computer with one or more graphical processing units
(GPUs) capable of installing GPU-enabled software and
running MD simulations on GPUs.

7 of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

4.1 Creating a new conda environment

* To verify the installation of conda in our system, we can
run the following command in the terminal:

[which conda]

If conda is properly installed, it will display the path to
the conda executable.

* We will create a dedicated conda environment for the
SEEKR2 package. We execute the following command
in the terminal to create a new environment named
SEEKR2 with Python version 3.9:

[conda create ——name SEEKR2 python=3.9]

+ To use the SEEKR2 environment, we need to activate it
by executing the following command in the terminal:

[conda activate SEEKR2]

4.2 Installing SEEKR2 dependencies

« We will ensure that the SEEKR2 conda environment is
activated.

[conda activate SEEKR2]

* To ensure that the Cython and git packages are in-
stalled, we execute the following commands in the

terminal:
[pip install --upgrade cython]
[conda install git]

+ For the proper execution of the tutorial scripts, we in-
stall the Ambertools and mdtraj packages via conda.

[conda install -c conda-forge ambertools]

[conda install -c conda-forge mdtraj]

« When installing SEEKR2 from source, we will also need
to install the following additional packages (otherwise,
not required for conda installation of SEEKR2):

[conda install numpy

[conda install scipy

[conda install netcdf4

— e

[conda install mpidpy

[conda install swig]

[conda install -c conda-forge doxygen]

To install the ccmake package, sudo privileges are re-
quired (otherwise, not required for conda installation
of SEEKR2). We execute the following command in the
terminal:

[sudo apt-get install cmake-curses-gui]

To ensure the successful installation of ccmake,
execute the following command:

[which ccmake]

4.3 Installing Browndye

Browndye2 (the latest version of the Browndye software) is
compatible with various operating systems, including Linux,
BSD, MacOS, and MS Windows. This tutorial will only provide
instructions to install the Browndye package on Linux distri-
butions. The recommended method for installing Browndye
is to download the source code and compile it. Browndye
relies on Ocaml and C++ compilers, with the C++17 version
being the minimum requirement.

* We install the necessary package dependencies based
on the Linux distribution:
For Ubuntu (20.04 and 22.04), we run the following com-
mand in the terminal:

apt-get install make gcc g++ ocaml \

libexpat-dev liblapack-dev apbs

For CentOS 7 distribution, we run the following com-
mands to update the compilers and install the required
packages:

[yum install centos-release-scl epel-release]

yum install devtoolset-9 ocaml expat-devel \

lapack-devel apbs

[scl enable devtoolset-9 bash]

* We will download the Browndye2 source code from
https://browndye.ucsd.edu/downloads/browndye2.tar.gz.
We recommend the user, though not required, to
install the software in the home directory. We then
extract the downloaded source code archive and install
BrownDye?2 by executing the following commands:

8 of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://browndye.ucsd.edu/downloads/browndye2.tar.gz
https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

4.4.2 Installing SEEKR2

wget https://browndye.ucsd.edu/downloads/
browndye?2.tar.gz

 If not already activated, we first activate the SEEKR2
] conda environment.

[tar xvfz browndye2.tar.gz

[conda activate SEEKR2]
[cd browndye2]

* It is recommended, though not required, to install the
[make -j 4 all] SEEKR2 program in the home directory. So, we navigate
to the home directory.

+ Once we have finished unpacking the files, it is impor-
tant to ensure that we include the installation location [cd ~]
of the Browndye2 software in the system’s PATH vari-
able. This will allow us to run the software from any
directory without specifying the full path each time. If
the software has been installed in the home directory,
we can add the path by using the following command:

+ We will clone the SEEKR2 Python API repository by run-
ning the following command in the terminal:

git clone https://github.com/seekrcentral/seekr2.git

* We then proceed with the installation of SEEKR2 Python

export PATH=/home/USERNAME/browndye2/bin:\ APl in the cloned seekr2 directory:

${PATH}

[cd seekr2]

+ To remove the downloaded file that is no longer neces-
sary, move to the folder where Browndye2 is installed [python -m pip install .]
and execute the following command:

* Once the installation is complete, it is recommended
to run tests to ensure the proper functioning of SEEKR2.
From within the seekr2 directory, we execute the follow-
ing command:

[pytest]

Running the tests may generate one or two failures depend-
4.4.1 Installing SEEKR2-OpenMM plugin ing on the availability of NAMD and Browndye2 software,
which can safely be ignored if these programs are not
required for your specific use case. SEEKR2 is now success-
fully installed on our system, and we can begin utilizing its
[conda activate SEEKR2] features and functionalities.

[rm browndye2.tar.gz]

Once the compilation process is complete, Browndye2 will
be installed and ready to use on the Linux distribution.

4.4 Conda installation of SEEKR2

+ If not already activated, we first activate the SEEKR2
conda environment.

+ We will install the SEEKR2 plugin, which installs the 4.4.3 Installing Seekrtools
OpenMM MD engine (version 7.7) and the CUDA
Toolkit version 10.2 (compatible with SEEKR2), along
with installing other dependencies.

Seekrtools is a suite of software utilities designed to
work with SEEKR2 to streamline the preparation pro-
cess and execution of multiscale milestoning simula-
conda install -c conda-forge \ tions. For more comprehensive instructions and tu-
seekr2_openmm_plugin torials, please refer to the official documentation at
https://seekrtools.readthedocs.io/en/latest. Ensuring that
* To test the successful installation of SEEKR2, open a SEEKR2 and OpenMM packages are installed before in-

Python terminal and enter the following command: stalling Seekrtools is crucial, as most programs within
Seekrtools rely on these packages.

python
>>> import seekr2plugin + If not already activated, we first activate the SEEKR2
conda environment.

[conda activate SEEKR2]

9 of 24 https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://browndye.ucsd.edu/downloads/browndye2.tar.gz
https://browndye.ucsd.edu/downloads/browndye2.tar.gz
https://github.com/seekrcentral/seekr2.git
https://seekrtools.readthedocs.io/en/latest
https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

* Itis recommended, though not required, to install the
seekrtools program in the home directory. So, we navi-
gate to the home directory.

EE)

+ We will clone the seekrtools Python API repository by
running the following command in the terminal:

git clone https://github.com/seekrcentral/
seekrtools.git

+ We then proceed with the installation of seekrtools
Python APl in the cloned seekrtools directory:

[cd seekrtools]

[python -m pip install .]

+ Once the installation is complete, it is recommended
to run tests to ensure the proper functioning of seekr-
tools. From within the seekrtools directory, we execute
the following command:

[pytest]

4.5 Installing SEEKR2 from source

4.5.1 Installing OpenMM from source

Sometimes, a SEEKR2 installation from conda-forge will not
be possible or desirable. In those cases, one will need to
perform the more arduous and difficult process of installing
OpenMM and the SEEKR2 OpenMM Plugin from source.
Before installing the OpenMM package, it is essential to
install CUDA. Please follow NVIDIA's CUDA toolkit installation
manual instructions and refer to the documentation at
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/
index.html. Carefully read and follow the steps outlined in the
guide to ensure a successful CUDA installation. Once CUDA
is installed, we can proceed with installing the OpenMM
package.

« If not already activated, we first activate the SEEKR2
conda environment.

[conda activate SEEKR2]

* Itis recommended, though not required, to install the
OpenMM repository in the home directory. So, we nav-
igate to the home directory.

G)

+ To clone the OpenMM repository:

git clome https://github.com/openmm/openmm.git

+ We then navigate to the openmm directory:

[cd openmm]

+ Create a build directory:

[mkdir build]

* To navigate to the build directory:

[cd build]

+ To configure the build using ccmake:

[ccmake ..]

The above command opens the ccmake GUI. Press
'c’ to configure and 't’ to toggle advanced mode. We
now modify the necessary variables in the ccmake GUI.
We will set CMAKE_INSTALL_PREFIX to a local directory
where we want to install the OpenMM engine (e.g.,
/home/USERNAME/bin/openmm). If the directory does
not exist, we will create it. Alternatively, we can leave
this variable the default if we have sudo privileges and
want to install OpenMM globally. We will then review
and modify any other variables if needed. After modify-
ing the variables, we press 'c’ to configure. If any issues
arise, ccmake will notify us. Once the configuration is
successful, we press ‘g’ to generate the build files. The
ccmake GUI will then close automatically.

To install OpenMM, execute the following commands
in the build directory:

(e)

[make install]

[make PythonInstall]

To test the successful installation of OpenMM:

[python -m openmm.testInstallation]

The above command will run a series of tests to ensure
OpenMM is installed correctly on our system.

We have now installed OpenMM and its plugins from the
source on our local machine.

10 of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://github.com/seekrcentral/seekrtools.git
https://github.com/seekrcentral/seekrtools.git
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://github.com/openmm/openmm.git
https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

4.5.2 |Installing SEEKR2-OpenMM plugin from source

Once the OpenMM engine is installed, we will install the
SEEKR2 plugin on top of the installed version of OpenMM. It
is recommended, though not required, to install the plugin
in the home directory.

+ If not already activated, we first activate the SEEKR2
conda environment.

[conda activate SEEKR2]

+ Itis recommended, though not required, to install the
SEEKR2 plugin in the home directory. So, we navigate
to the home directory.

EE)

To clone the SEEKR2-OpenMM plugin repository:

git clone https://github.com/seekrcentral/seekr2

openmm _ plugin.git

« We then navigate to into the seekr2_openmm_plugin di-
rectory:

cd seekr2_openmm_plugin/seekr2plugin

Create a build directory:

{mkdir build]

To navigate to the build directory:

+ To install the SEEKR2 plugin, we execute the following
commands in the build directory:

=)

[make install]

[make PythonInstall]

* To ensure proper installation of the SEEKR2 plugin, we
execute the following command in the terminal:

[make test]

4.5.3 Installing SEEKR2

Please refer to section 4.4.2 for detailed instructions to install
SEEKR2. However, for the sake of completion, we execute the
following commands to install SEEKR2.

conda activate SEEKR2

Activate SEEKR2 environment, if not activated

cd ~

Navigate to home directory (recommended)

git clone https://github.com/seekrcentral/seekr2.git
Clone the SEEKR2 repository

cd seekr2

Navigate to the seekr2 directory

[cd build]

+ To configure the build using ccmake:

[ccmake ..]

The above command opens the ccmake GUI.
Press 'c’ to configure. We now modify the nec-
essary variables in the ccmake GUI. We will set
CMAKE_INSTALL_PREFIX to the directory similar to the
CMAKE_INSTALL_PREFIX as set during the OpenMM in-
stallation (e.g., /home/USERNAME/bin/openmm). We will
also set the OPENMM_DIR to the directory similar to the
CMAKE_INSTALL_PREFIX as set during the installation of
OpenMM engine (e.g., /home/USERNAME/bin/openmm).
We will set the SEEKR2_BUILD_OPENCL_LIB to OFF.
After modifying the variables, we press 'c’ to configure.
If any issues arise, ccmake will notify us. Once the
configuration is successful, we then press ‘g’ to gen-
erate the build files. The ccmake GUI will then close
automatically.

python -m pip install .
Install SEEKR2

pytest
Run tests to check successful installation

4.5.4 Installing Seekrtools

Seekrtools is a suite of software utilities designed to work
with SEEKR2 applications, primarily SEEKR2, to streamline the
preparation process and execution of multiscale milestoning
simulations. For more comprehensive instructions and tu-
torials, please refer to the official documentation at https://
seekrtools.readthedocs.io/en/latest. Ensuring that SEEKR2 and
OpenMM packages are installed before installing Seekrtools
is crucial, as most programs within Seekrtools rely on these
packages.

+ If not already activated, we first activate the SEEKR2
conda environment.

[conda activate SEEKR2]

11 of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://github.com/seekrcentral/seekr2_openmm_plugin.git
https://github.com/seekrcentral/seekr2_openmm_plugin.git
https://github.com/seekrcentral/seekr2.git
https://seekrtools.readthedocs.io/en/latest
https://seekrtools.readthedocs.io/en/latest
https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

* Itis recommended, though not required, to install the
seekrtools program in the home directory. So, we navi-
gate to the home directory.

EE)

+ We will clone the seekrtools Python API repository by
running the following command in the terminal:

git clone https://github.com/seekrcentral/

seekrtools.git

+ We then proceed with the installation of seekrtools
Python APl in the cloned seekrtools directory:

[cd seekrtools]

[python -m pip install .]

5 SEEKR2 tutorials

We will explore the three distinct stages of a SEEKR2 calcu-
lation: prepare, run, and analyze. Every stage is required to
obtain estimates of the kinetics and thermodynamics of a sys-
tem. This tutorial assumes that we use a computer with one
or more graphical processing units (GPUs). If the computer
does not have a GPU, we ought to transfer all files to a com-
puter equipped with a GPU (and OpenMM, with the SEEKR2
OpenMM Plugin and SEEKR2 Python API installed) to run MD
simulations.

To begin with the SEEKR2 tutorials, we first activate the
SEEKR2 conda environment, if not already activated.

[conda activate SEEKR2]

We download the SEEKR_tutorials repository by executing
the following command in the terminal:

git clone https://github.com/anandojha/SEEKR _tutorials

Within the working_examples directory of the SEEKR_tuto-
rials repository, there exist three subdirectories, i.e.,
beta_cyclodextrin_guest_complexes, trypsin_benzamidine_com-
plex, and simulation_data (Outline 1). The beta_cyclodext-
rin_guest_ complexes and the trypsin_benzamidine_complex
directories contain all the necessary files for running
SEEKR2 simulations for receptor-ligand complexes. The
simulation_data directory contains reference SEEKR2
simulations offering users to perform post-simulation
analyses. To start with the tutorials, we now navigate to the
working_examples directory:

cd ~/SEEKR_tutorials/SEEKR_tutorials/

cd working_examples

The working examples directory contains the SEEKR2
tutorials on biomolecular complexes, i.e., the seven -
cyclodextrin-guest complexes (Figure 4) and the trypsin-
benzamidine complex (Figure 6). One of the subdirectories,
beta_cyclodextrin_guest complexes, contains the seven host-
guest complexes where necessary files and scripts are
located for each of the complexes to set up the SEEKR2
calculation, run MD and BD simulations, and analyze
SEEKR2 simulations to calculate thermodynamic and ki-
netic quantities of interest. The tutorial will go through
one of the host-guest complexes, i.e., the BCD-1-butanol
complex. The user may follow the same instructions to get
started with the other six host-guest complexes within the
beta_cyclodextrin_guest complexes directory. Similarly, the
other subdirectory, trypsin_benzamidine_complex contains
the files and scripts to parameterize the receptor-ligand
complex, set up the SEEKR2 simulations, and perform the
post-SEEKR2 analysis.

Outline 1: Overview of the working_examples
directory within SEEKR_tutorials directory

working_examples
+— beta_cyclodextrin_guest_complexes

+— BCD_1-butanol

+— BCD_1-napthylethanol
+— BCD_1-propanol

+— BCD_2-napthylethanol
+— BCD_aspirin

+— BCD_methyl_butyrate

«— BCD_terbutanol

+— simulation_data

t beta_cyclodextrin_guest_complexes

trypsin_benzamidine_complex

+— trypsin_benzamidine_complex

5.1 Basic Tutorial: s-cyclodextrin
(host)-guest complexes

12 of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://github.com/seekrcentral/seekrtools.git
https://github.com/seekrcentral/seekrtools.git
https://github.com/anandojha/SEEKR_tutorials
https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

Stage 1: Prepare

The first stage of a SEEKR2 calculation is the preparation
phase. This stage involves setting up the necessary input
files and defining parameters for the simulation. Let us
subdivide the preparation phase further into three stages:

1. Obtaining the structure and the parameter file for the
host-guest complex

If not already activated, we first activate the SEEKR2 conda
environment.

[conda activate SEEKR2]

We start with a structure (PDB) file for the host-guest com-
plex. We then prepare a force field parameter file specific
to the complex. In this tutorial, we have taken the initiative
to provide the parameter file for the receptor-ligand com-
plex. We assume that the users have prior experience with
force field files for receptor complexes. Let us begin with the
hostguest.pdb and hostguest.parm?7 files.

HO, ‘“w"‘ o

B-cyclodextrin o OH
I N o
1-butanol 1-propanol methyl butyrate tert-butanol

HOy,,

annQ
I

Qk

1-naphthylethanol 2-naphthylethanol aspirin
Figure 4.

molecules

B-cyclodextrin (host) and the seven ligand (guest)

Outline 2 shows the files we will require for the success-
ful completion of the SEEKR2 tutorial on the host-guest
complexes.

2. Preparing PQR files for Brownian dynamics simula-
tions

Given the hostguest.pdb file containing the receptor (8-
cyclodextrin) and the ligand molecule, we will obtain

separate PQR files for the receptor and ligand molecule,
respectively. These files are required to run BD simulations
to calculate the receptor-ligand binding rates (kon). To
obtain the PQR files, we will use the ambpdb program
integrated into the Ambertools. The ambpdb program
requires a topology file (hostguest.parm7) and a coordinate
file (hostguest.inpcrd) to create a PQR file (hostguest.pqr). The
PQR file is almost identical to a PDB file, except the charge
and radius columns in the PQR files substitute the beta and
occupancy columns in the PDB file. Once a hostguest.pgr file
is created using the ambpdb tool, we want to create two
separate PQR files from the hostguest.pgr file, i.e., the recep-
tor.pgr file containing the coordinate, charge, and radius
information of the receptor atoms and the ligand.pqgr file
containing the coordinate, charge, and radius information
of the ligand atoms.

The python script, create_BD_files.py generates a coordinate
file, i.e., hostguest.inpcrd using the CPPTRA] module with the
structure and topology files as input. The script then further
creates receptor.pqr and ligand.pqr files by reading into the
hostguest.pqgr file. To achieve this, we execute the following
command in the terminal:

[python create_BD_files.py]

Outline 2: Overview of the beta_cyclodextrin_guest_
complexes directory within working_examples
directory

beta_cyclodextrin_guest_complexes
+— BCD_1-butanol

hostguest.pdb
hostguest.parm7
create_BD_files.py
input_SMD_HIDR.xml
+— BCD_1-napthylethanol
+— BCD_1-propanol

+— BCD_2-napthylethanol
+— BCD_aspirin

+— BCD_methyl_butyrate

«— BCD_terbutanol

Once the coordinate file is generated, the script then creates
a PQR file, i.e., hostguest.pqr by executing the following com-
mand in the terminal:

13 0of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

ambpdb -p hostguest.parm7? -c hostguest.inpcrd \
-pqr > hostguest.pqr

The Browndye?2 software lumps all the charges of the residue
into one point charge, which may be acceptable for a protein,
as in the case of the receptor.pgr file where all the atoms of a
particular residue have the same numbering. But for a small
ligand, the accuracy can be further improved if we consider
each atom as a point charge. This is accomplished by renum-
bering the atoms of the ligand, each with a different number.
To achieve this, we execute the following command in the
terminal:

python ~/$PWD/scripts/pqr_resid_for_each_atom.py \
ligand.pqr ligand.pqr

where $PWD is seekrtools/seekrtools/scripts

Now, we have the required files to proceed to the next step.

3. Running Steered MD simulations to obtain starting
structures for SEEKR2 simulations

Determining the anchor points for the host-guest complex
is the first step towards milestoning simulations in the
SEEKR2 framework. We first choose an appropriate collec-
tive variable (CV) to determine the anchor points that could
describe the receptor-ligand binding and unbinding dynam-
ics. In the case of the host-guest complex, we choose the
distance between the center of mass (COM) of the receptor
(B-cyclodextrin) and the ligand as the CV to determine the
anchor points. The anchor points, therefore, lie on a line
composed of the COM-COM distance. Once the anchor
points are determined, we define concentric spherical
milestones around the receptor-ligand binding site where
the concentric radii are midpoints of any two consecutive
anchor points. These milestones will act as reference points
during the simulation. We then use steered MD (SMD) to
slowly pull the ligand away from the binding site with a
harmonic restraint and save the trajectory snapshots as it
crosses the anchor point while slowly moving out of the
binding pocket. Once the ligand is pulled out completely, we
have the saved structure files, which will be used to create a
SEEKR?2 file tree where SEEKR2 simulations will occur.

Holo insertion by directed restraints (HIDR), a computational
method employed in the SEEKR2 framework, utilizes one or
more initial configurations alongside a SEEKR2 input XML
file, pulls the system towards all the anchors present in
the SEEKR2 framework until starting structures exist in all
of them. The HIDR algorithm employs SMD simulations to
accomplish this.

The HIDR program needs a model.xml file to run the SMD sim-
ulations, so we run the prepare.py script on a model input file.

The model input XML file for SEEKR2 calculations contains
various parameters and settings that define the configura-
tion and behavior of the calculation (Summary 1). It should
be noted that the <md_steps_per_anchor> tag defines the
number of MD simulation steps per anchor, and for tutorial
purposes, the simulation steps in each anchor are reduced
compared to our original study. The <root_directory> tag has
to be explicitly defined by the user in the input._ SMD_HIDR.xml
file. To run the prepare.py script on the model input file, we
execute the following command in the terminal:

python ~/seekr2/seekr2/prepare.py \
input_SMD_HIDR.xml

Summary 1: Overview of sections and tags within
the XML file

<calculation_type>: Specifies the type of mile-
stoning model to employ. SEEKR2 either em-
ploys the "mmuvt" (Markovian milestoning with
Voronoi Tesselations) or the "elber" model for
the original Elber milestoning method.
<calculation_settings>: A block of settings spe-
cific to the chosen calculation type. The tags
within this section vary depending on the calcu-
lation type.

<md_output_interval>: Interval between
outputs of simulation state information, tra-
jectory frames, and restart checkpoints (in MD
timesteps).

<md_steps_per_anchor>: Total number of MD
timesteps to be run per anchor.
<temperature>: Temperature (in Kelvin) to be
used for all stages of the calculation.
<pressure>: Pressure (in bar) for simulations if
the ensemble is set to npt. Ignored if the ensem-
ble is set to nvt.

<ensemble>: Defines the ensemble of MD sim-
ulations. Options include nvt (constant volume
and temperature) and npt (constant pressure
and temperature).

<root_directory>: Filesystem path to the direc-
tory where the calculation files will be written.
<md_program>: Specifies the MD simulation
engine to use. The user has the option to
choose either openmm or namd.
<constraints>: Specifies the type of bond and
angle constraints in the MD simulation.
<rigid_water>: Specifies whether
molecules will have a rigid angle.

water

14 of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

+ <hydrogen_mass>: Mass (in AMU) to use for
hydrogen mass repartitioning (HMR).
<integrator_type>: Type of integrator to be
used for simulation dynamics.
<timestep>: MD timestep (in ps).
nonbonded_cutoff: Nonbonded cutoff (in nm)
for MD simulations.
<cv_inputs>: Settings defining the collective
variables (CVs) and their associated anchors
and milestones.
<cv_input>: Input structure for a CV, with the
CV type defined by the class attribute.

<group>: Lists of atom indices for CV func-
tions involving centers of masses of groups of
molecules.

<bd_group>: Atoms within PQR files used in BD
simulations to define the CV.
<input_anchors>: Block of input anchors used
to construct model anchors.
<input_anchor>: Input for an anchor, with
the class attribute matching a particular
CV. Attributes depend on the anchor type,
such as <starting_amber_params>, <radius>,
<lower_milestone_radius>, <upper_milestone_ra
dius>, etc.
<browndye_settings_input> (optional): Set-
tings for Browndye simulations and kon
calculations.
<binary_directory>:
Browndye2 programs
<receptor_pqr_filename>: Path to the PQR file
representing the receptor.
<ligand_pqr_filename>: Path to the PQR file
representing the ligand.
<apbs_grid_spacing>: Grid spacing (in A) for
APBS calculations.

<receptor_indices>: Atom indices defining the
binding site in the receptor PQR file.
<ligand_indices>: Atom indices defining the
center of the ligand molecule in the ligand PQR
file.
<ions>: Block of ion objects used in APBS and
BD calculations.
<ion>: Object representing an ion with at-
tributes like <radius>, <charge>, and <conc>.
<num_b_surface_trajectories>: Total number
of trajectories for b-surface simulations.
<n_threads>: Number of CPUs to use in
Browndye?2 calculations.

Directory containing

Now the model XML file and the SEEKR?2 file tree have been

generated in a separate SEEKR_simulation directory as speci-
fied explicitly by the <root_directory> tag in the model input
XML file, i.e., the input_ SMD_HIDR.xml file. HIDR will now em-
ploy SMD simulations to gradually pull the system into every
anchor and save the structures for subsequent SEEKR2 cal-
culations. It is important to note that HIDR offers alternative
approaches, such as random acceleration MD (RAMD) and
ratcheting, to populate starting structures. For detailed in-
structions on utilizing these alternative methods, it is recom-
mended to refer to the HIDR documentation and seekrtools
tutorials. To run SMD simulations with the HIDR algorithm,
execute the following command in the terminal:

python ~/seekrtools/seekrtools/hidr/hidr.py \
any SEEKR_simulation/model.xml -M SMD -p \
hostguest.pdb

This command is likely to run for hours or days, depending
on the speed of the GPU. We can obtain a comprehensive
overview of HIDR arguments by executing HIDR with the -h
argument using the following python command:

python ~/seekrtools/seekrtools/hidr/hidr.py -h

Several important options are available, such as specifying
the number of equilibration steps to be executed before SMD
simulations. For example, including the argument below will
instruct HIDR to perform 5,000,000 equilibration steps (10 ns)
before initiating any SMD simulations:

python ~/seekrtools/seekrtools/hidr/hidr.py \
any SEEKR_simulation/model.xml -M SMD -p \
hostguest.pdb -e 5000000

Additionally, we can allow for some equilibration steps within
each anchor after the SMD simulation has reached that par-
ticular anchor. These equilibration steps are referred to as
settling steps in HIDR. To specify the number of settling steps,
the -S argument is used. To allow for 200,000 settling steps
(0.2 ns), we execute the following command in the terminal:

python ~/seekrtools/seekrtools/hidr/hidr.py \
any SEEKR_simulation/model.xml -M SMD -p \
hostguest.pdb -S 100000

By default, HIDR SMD simulations move the system towards
each anchor at an approximate 0.01 nm/ns speed. This
speed is designated to let the system reach each anchor
within a reasonable time frame while avoiding excessive
perturbations to the system. However, the speed can be
adjusted using the -v argument. For instance, if the user
desires to perform SMD simulations ten times faster (thus

15 of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

completing in one-tenth of the time), the speed can be set
to 0.1 nm/ns:

python ~/seekrtools/seekrtools/hidr/hidr.py \
any SEEKR_simulation/model.xml -M SMD -p \
hostguest.pdb -v 0.1

To keep the directory clean, we can optionally choose to
delete the intermediate files:

rm hostguest.inpcrd hostguest.pqr ligand.pqr \

receptor.pqr

Stage 2: Run

During the prepare stage of a SEEKR2 calculation, a file tree
containing all the necessary files and directories is generated
atthe specified location indicated by the <root_directory>tag
in the model input file. Once the preparation stage is com-
plete, we move on to the run stage.

The run stage involves executing the simulations based on
the files and directories from the prepare stage. Inside this
directory, i.e., SEEKR simulation, a model.xml file exists. In
the subsequent stages of SEEKR2, especially the run stage
and beyond, the path to the model.xml file is used as an
argument in most SEEKR2 programs. It is important to note
that modifying the model.xml file directly without re-running
the prepare.py script is not recommended. To start the run
stage, we will use the run.py script. The following command
launches the script to run MD simulations within the SEEKR2
milestones:

python ~/seekr2/seekr2/run.py any \
SEEKR_simulation/model .xml

In the above command, the word "any" is the instruction ar-
gument for the run.py script. It instructs the script to run any
unfinished MD or BD simulations. We can use "any_md" or
"any_bd" as an instruction input to run only unfinished MD
or BD simulations. Please refer to the SEEKR2 documenta-
tion for a comprehensive list of available instruction inputs
as run.py arguments.

Once we initiate the run.py script, simulations will run until
completion or interruption. The SEEKR2 framework saves
checkpoints for both MD and BD simulations, allowing us to
resume the calculation from where it was interrupted. To
track the progress and convergence of the simulations, we
use the converge.py script:

python ~/seekr2/seekr2/converge.py any \
SEEKR_simulation/model.xml

Running the converge.py script generates convergence plots,
and images are saved in the plots_and_images subfolder
within the <root_directory>. For additional arguments that
can be used with both run.py and converge.py, we can run
either script with the -h argument (Summary 2).

Summary 2: Arguments for converge.py

Positional Arguments

* MODEL_FILE: This argument specifies the name of
the model file for the SEEKR2 calculation. We need
to replace MODEL_FILE with the model file name,
i.e., model.xml used in the calculation.

Optional Arguments

+ -s K_ON_STATE: This argument allows us to define
the bound state used to compute the kon value. If
we want to specify a particular bound state, we in-
clude the -s option followed by the state name.

-d IMAGE_DIRECTORY: Using this argument, we
can define the directory where plots and images
will be saved. If we want to specify a different di-
rectory, we include the -d option followed by the
desired directory path. By default, all the plots will
be saved to the images_and_plots directory.

-c CUTOFF: This argument sets the minimum con-
vergence value required to conclude that the cal-
culations have converged for a given anchor. The
default value is 0.1, but we can specify a different
cutoff value by including the -c option followed by
the desired value.

-m MINIMUM_ANCHOR_TRANSITIONS: Using
this argument, we can set the minimum number
of transitions that must be observed per mile-
stone in a given anchor as a criterion for SEEKR2
simulations. The default value is 100, but we can
specify a different value by including the -m option
followed by the desired number.

-I, -long converge: This argument determines
whether to run a complete convergence analysis.
Including the -l flag in the command will enable the
extended convergence analysis. By default, this is
set to False.

Stage 3: Analyze

The final stage within the SEEKR2 framework involves analyz-
ing the results obtained from the simulations. This stage en-
ables the construction of kinetics and thermodynamics pro-
files for the studied process.

16 of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

Summary 3: Arguments for analyze.py

Positional Arguments

MODEL_FILE: This argument specifies the name of
the model file for the SEEKR2 calculation. We need
to replace MODEL_FILE with the model file name,
i.e., model.xm/ used in the calculation.

Optional Arguments

-f, -force_warning: By default, missing statistics
for any anchors will generate fatal errors. This op-
tion will instead raise a warning and attempt the
calculation anyway.

-n NUM_ERROR_SAMPLES: This argument speci-
fies the number of error samples to generate for
estimating the error/uncertainty of computed val-
ues. The default value is 100.

-S STRIDE_ERROR_SAMPLES: This argument spec-
ifies the number of strides between saved error
samples. An argument of None automatically as-
signs the quantity at the number of milestones in
the model squared. The default value is None.

-K SKIP_ERROR_SAMPLES, -skip_error_samples
SKIP_ERROR_SAMPLES: This argument specifies
the number of error samples to skip before using
them. An argument of None automatically assigns
the quantity at ten times the number of milestones
in the model squared. The default value is None.
-d IMAGE_DIRECTORY: By using this argument, we
can define the directory where plots and images
will be saved. If we want to specify a different di-
rectory, we include the -d option followed by the
desired directory path. By default, all the plots will
be saved to the images_and_plots directory.

-s, -skip_checks: By default, post-simulation
checks will be run before the analysis is started,
and if the checks fail, the analysis will not proceed.
This argument bypasses those checks and allows
the analysis to proceed anyways.

-t MINIMUM_TIME: A user may wish to skip a sim-
ulation time for each anchor before counting the
transitions for milestoning analysis. When per-
forming analysis, we enter the time (in ps) to skip
a portion of the production simulations.

-T MAXIMUM_TIME, -maximum_time MAXI-
MUM_TIME: A user may wish to stop the analysis
of simulation time for each anchor at a particular
time. We enter the time (in ps) to end the analysis
at a given anchor if the simulation time exceeds it.

To execute the post-simulation SEEKR2 analysis:

python ~/seekr2/seekr2/analyze.py \
SEEKR_simulation/model .xml

The analyze.py script takes the model.xml file as an argu-
ment. It constructs the milestoning model, populates it
with transition probabilities and simulation times within
each milestone, and computes error margins. For a list of
arguments that can be used with analyze.py, we can run the
script with the -h argument (Summary 3). Figure 5 shows
the free energy profile per milestone for the BCD-1-butanol
complex, obtained by executing the analyze.py script.

A
o w o w o

AG(milestone) (kcal/mol)

o
e
L

0.0 1

0 2 4 6 8 10 12
milestones

Figure 5. Free energy profile per milestone (AG;) obtained from the
SEEKR2 milestoning method for the -cyclodextrin (host) and the 1-
butanol (guest) complex.

5.2 Advanced Tutorial: Trypsin-benzamidine
complex

Stage 1: Prepare

1. Obtaining the structure and the parameter file for the
trypsin-benzamidine complex

This section will prepare input files for the SEEKR2 simulation
to determine the (un)binding kinetics between the receptor
protein, trypsin, and the ligand molecule, benzamidine. The
Amber molecular mechanics forcefield is used to parameter-
ize the receptor-ligand complex. This tutorial assumes the
user has some familiarity with AmberTools. If the user is new
to AmberTools, we recommend visiting the Amber tutorials
page (https://ambermd.org/tutorials/) or reviewing the Amber
manual (https://ambermd.org/Manuals.php) for a comprehen-
sive understanding. Outline 3 shows the files we will require

17 of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://ambermd.org/tutorials/
https://ambermd.org/Manuals.php
https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

for the successful completion of the SEEKR2 tutorial on the
trypsin-benzamidine complex.

(i) Identify the ligand molecule and the receptor protein
in the receptor-ligand complex

The first step is to identify the molecules in the receptor-
ligand complex. In this case, we have trypsin as the target
molecule and benzamidine as the ligand molecule. The
trypsin-benzamidine complex is a standard complex for
studying binding and unbinding kinetics.

(ii) Parameterization of the receptor-ligand complex

In the SEEKR2 framework, to estimate the binding and
unbinding of receptor-ligand bimolecular complexes, one of
the molecules is the ligand that needs to be parameterized
separately. One method to accomplish this is to use the An-
techamber program in AmberTools. Antechamber requires
a structure file specific to the small molecule to perform the
parameterization. In our case, we will utilize a PDB file that
contains only the benzamidine structure, which has been
parametrized using a semi-empirical method and the gener-
alized AMBER force field. Although semi-empirical methods
for assigning charges are quick and convenient, they may
not provide the most accurate results for assigning partial
charges to a molecule. It is advisable to explore more pre-
cise levels of quantum calculations to obtain partial charges,
such as Hartree Fock with Density Function Theory (HF-DFT)
or Mgller-Plesset 2 (MP2) calculations within a charge model
such as RESP or CHELPG. However, these calculations
involving higher levels of quantum theory require dedicated
quantum calculation software like Gaussian, GAMESS, ORCA,
etc. Incorporating parameters from quantum calculation
software is a complex topic that is beyond the scope of this
tutorial.

Outline 3: Overview of the trypsin_benzamidine_
complex directory within working_examples
directory

trypsin_benzamidine_complex

— hostguest.pdb

+— minimize_equilibriate.py

+— extract_benzamidine.py

+— create_BD_files.py

¢— parameterize_trypsin_benzamidine.tleap

+— save_benzamidine_lib.tleap

+— input_SMD_HDR.xml

To save a separate PDB structure of the ligand molecule
(benzamidine.pdb) from the given receptor-ligand complex
(trypsin_benzamidine_init.pdb), we execute the following
command in the terminal.

[python extract_benzamidine.py]

We use the Antechamber program, part of AmberTools to
parameterize the benzamidine molecule. The antechamber
command takes several arguments to specify input and out-
put files, formats, and parameters (Summary 4). We will exe-
cute the following command in the terminal to parameterize
the benzamidine molecule.

antechamber -i benzamidine.pdb -fi pdb -bk BEN \

-0 benzamidine.mol2 -fo mol2 -c bcc -nc 1

We will now generate a parameter modification (frcmod) file
containing the molecular force field parameters for the ben-
zamidine molecule. Thisfileis later used in the LEAP function-
ality of the Ambertools to parameterize the receptor-ligand
complex. The ParmChk2 program generates the frcmod file
for the benzamidine molecule. We will execute the following
command in the terminal to generate the frcmod file.

parmchk2 -i benzamidine.mol2 -f mol2 -o \

benzamidine.frcmod

Figure 6. Trypsin - benzamidine complex

18 of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

We generate a .lib file, a library file of forcefield parameters
for the benzamidine molecule, by executing the following
command in the terminal:

[tleap -f save_benzamidine_lib.tleap]

The final step in parameterizing the trypsin-benzamidine
complex involves solvating the system with water molecules
and applying periodic boundary conditions. This ensures
that the simulation accurately represents the behavior of
the complex in an aqueous environment while accounting
for long-range interactions and avoiding edge effects. Addi-
tionally, counterions are added to neutralize any net charge
in the system, creating an electrically neutral simulation
system. We execute the following command in the terminal
to parameterize the trypsin-benzamidine complex:

[tleap -f parameterize_trypsin_benzamidine.tleap]

Summary 4: Arguments used in the antechamber pa-
rameterization of the ligand

* -i benzamidine.pdb: Take the ben.pdb file as in-
put.

-fi pdb: The format of benzamidine.pdb is in PDB
format.

-bk BEN: The component/block ID for benzamidine
in the PDB file is BEN.

-0 benzamidine.mol2: Specifies the output file
name of the benzamidine molecule.

-fo mol2: Outputs the benzamidine.mol2 file in
MOL2 format.

-c bec: Uses the AM1-BCC semi-empirical method
to assign partial charges of the atoms.

-nc 1: The molecule has a net molecular charge of
+1 due to its protonation state in aqueous environ-
ments at pH =7.

\ J

In the parameterize_trypsin_benzamidine.tleap file, explana-
tions for the commands are as under:

* source leaprc.protein.ff14SB: Sourcing the ff14SB
forcefield, a recently generated force field parameter
set known for its good performance in molecular
simulations of proteins, provides accurate descriptions
of protein atoms and their interactions.

* source leaprc.water.tip4pew: By sourcing the
leaprc.water.tipdpew file, the TIP4Pew water model
is employed. This water model is considered more
accurate than the commonly used TIP3P model.

* solvateoct receptor_ligand_complex TIP4PEWBOX 8:
This command solvates the receptor-ligand complex,
represented by the variable receptor_ligand_complex,

in a truncated octahedral box using TIP4Pew water
molecules. The truncated octahedral shape is pre-
ferred over a simple cubic box due to its more efficient
use of space, reducing the number of water molecules
required to solvate the system. The specified padding
of 8 A creates a buffer region around the protein
to prevent any artifacts from periodic boundary
conditions.

* addIons2 mol Cl- 7: Since the system has a net
positive charge, adding chloride ions (Cl-) neutralizes
the overall charge. When setting up simulations, it is
generally recommended to carefully consider the ions
present in the experimental or physiological conditions
to mimic the real environment closely. However, in
this specific scenario, the decision to use only chloride
ions is based on the information available and the
challenges associated with including other ions.

To remove multiple output files generated by the antecham-
ber and leap commands, which are no longer required for
subsequent parameterization steps, we can execute the fol-
lowing command in the terminal:

rm *ANTECHAMBER* ATOMTYPE.INF *sgm* leap.log \

benzamidine.frcmod benzamidine.lib \

benzamidine.mol2 benzamidine.pdb

The next step involves the energy minimization of the trypsin-
benzamidine complex to its local minima, followed by equi-
libration in the NVT ensemble. System minimization aims
to find an energetically stable conformation of the system
by iteratively adjusting the atomic positions to minimize the
potential energy, therefore beginning with a favorable start-
ing structure. Equilibration prepares the biomolecular com-
plexes for MD production runs by resolving initial structural
and energetic irregularities, ensuring stable and reliable sim-
ulations under target conditions. To perform the energy min-
imization followed by system equilibration, we execute the
following command in the terminal:

[python minimize_equilibriate.py]

2. Preparing PQR files for Brownian dynamics simula-
tions

Given the trypsin_benzamidine.pdb file containing the recep-
tor (trypsin) protein and the ligand (benzamidine) molecule,
we will obtain separate PQR files for the receptor and ligand
molecule, respectively. The ambpdb program requires a
topology file (trypsin_benzamidine.prmtop) and a coordi-
nate file (trypsin_benzamidine.inpcrd) to create a PQR file
(trypsin_benzamidine.pqr). Once a trypsin_benzamidine.pqr

19 of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

file is created using the ambpdb tool, we would want to cre-
ate two separate PQR files from the trypsin_benzamidine.pqr
file, i.e., the trypsin.pqr file containing the coordinate, charge,
and radius information of the receptor atoms and the
benzamidine.pqr file containing the coordinate, charge, and
radius information of the ligand atoms.

The python script, create_BD_files.py generates a coordinate
file, i.e., trypsin_benzamidine.inpcrd using the CPPTRAJ] mod-
ule with the structure and topology files as input. Once the
coordinate file is generated, the script then creates a PQR file,
i.e., trypsin_benzamidine.pqr by executing the following com-
mand:

a SEEKR?2 file tree is created where SEEKR2 simulations will
occur.

As mentioned previously, the HIDR program requires a
model.xml file to run the SMD simulations, so we run the
prepare.py script on a model input file. It should be noted
that the <md_steps_per_anchor> tag defines the number of
MD simulation steps per anchor, and for tutorial purposes,
the simulation steps in each anchor are reduced. The
<root_directory> tag has to be explicitly defined by the user
in the input_ SMD_HIDR.xml file. To run the prepare.py script
on the model input file, we execute the following command
in the terminal:

ambpdb -p trypsin_benzamidine.prmtop -c \
trypsin_benzamidine.inpcrd -pgr > \

trypsin_benzamidine.pqr

The script then further creates trypsin.pqr and benzami-
dine.pgr files by reading into the trypsin_benzamidine.pqr file.
To achieve this, we execute the following command in the
terminal:

[python create_BD_files.py]

While the Browndye2 software consolidates all residue
charges into a single point charge, suitable for proteins
like in the case of trypsin.pgr file with uniformly numbered
atoms within a residue. But for small ligands, accuracy is
enhanced by treating each atom as a distinct point charge
and renumbering them individually. To achieve this, we
execute the following command in the terminal:

python ~/$PWD/scripts/pqr_resid_for_each_atom.py \
benzamidine.pqr benzamidine.pqr

where $PWD is seekrtools/seekrtools/scripts

Now, we have the required files to proceed to the next step.

3. Running Steered MD simulations to obtain starting
structures for SEEKR2 simulations

To determine the anchor points for milestoning simulations
in the SEEKR2 framework, we choose the appropriate CV
for the trypsin-benzamidine complex. Here, the distance
between the center of mass (COM) of the binding site of the
trypsin protein and the ligand serves the CV, followed by
determining the anchor points (Figure 7). Subsequently, we
establish concentric spherical milestones around the bind-
ing site, using midpoints between successive anchor points
as their radii. Through SMD simulations, the benzamidine
ligand is slowly extracted from the binding site, capturing
trajectory snapshots at each anchor point. Once the ligand
is pulled out entirely and we have the saved structure files,

python ~/seekr2/seekr2/prepare.py \
input_SMD_HIDR.xml

." - = /N
 Gly194, \,":' Gly196
/- T Pia
\\ a "ﬁ g g
Pkt 3 4 Lys202

Figure 7. Trypsin-benzamidine complex with the benzamidine
molecule (in black) and surrounding residues constituting the bind-
ing site (in orange). The distance between the center of mass of the
heavy atoms of the benzamidine molecule and the a-carbons of the
binding site residues constitute the collective variable.

Now the model XML file and the SEEKR2 file tree have been
generated in a separate SEEKR_simulation directory as speci-
fied explicitly by the <root_directory> tag in the model input
XML file, i.e., the input_ SMD_HIDR.xml file. HIDR will now em-
ploy SMD simulations to gradually pull the system into every
anchor and save the structures for subsequent SEEKR2 cal-

20 of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

culations. To run SMD simulations with the HIDR algorithm,
execute the following command in the terminal:

python ~/seekrtools/seekrtools/hidr/hidr.py \
any SEEKR_simulation/model.xml -M SMD -p \

trypsin_benzamidine.pdb

This command is likely to run for hours or days, depending
on the speed of the GPU. We can obtain a comprehensive
overview of HIDR arguments by executing HIDR with the -h
argument using the following python command:

python ~/seekrtools/seekrtools/hidr/hidr.py -h

Several options in the HIDR program can be specified (de-
scribed earlier in section 5.1), such as determining the equi-
libration steps before SMD simulations, allowing for some
equilibration steps (settling steps) within each anchor after
the SMD simulation has reached that particular anchor, and
adjusting the speed of HIDR simulations.

To keep the directory clean, we can optionally choose to
delete the intermediate files:

rm trypsin_benzamidine.inpcrd trypsin.pqr \

trypsin_benzamidine.pqr benzamidine.pqr

Stage 2: Run

During the prepare stage of a SEEKR2 calculation, a file tree
with essential files and directories is created at the location
specified by the <root_directory> tag in the model input file.
The run phase begins, executing SEEKR2 simulations based
on the files and directories from the prepare stage. Within
the main directory (SEEKR_simulation), a model.xml file exists.
The path to the model.xml file is frequently used as an ar-
gument in many subsequent SEEKR2 processes, especially
during the run phase. It is to be noted that directly alter-
ing the model.xml without reinitiating prepare.py is not rec-
ommended. The run.py script initiates the run phase, and
the following command launches the script to run MD simu-
lations within the SEEKR2 milestones.

python ~/seekr2/seekr2/run.py any \
SEEKR_simulation/model.xml

In the above command, "any" serves as the instruction
argument for the run.py script, prompting it to complete any
pending MD or BD simulations. One might use "any_md"
or "any_bd" to address unfinished MD or BD simulations.
Please refer to the SEEKR2 documentation for a detailed set
of available directives for the run.py script.

Once we initiate the run.py script, simulations will run until
completion or interruption. The SEEKR2 framework saves
checkpoints for both MD and BD simulations, allowing us to
resume the calculation from where it was interrupted. To
track the progress and convergence of the simulations, we
use the converge.py script:

python ~/seekr2/seekr2/converge.py any \
SEEKR_simulation/model.xml -1

Running the converge.py script generates convergence plots,
and images are saved in the plots_and_images subfolder
within the <root_directory>. For additional arguments that
can be used with both run.py and converge.py, we can run
either script with the -h argument.

Stage 3: Analyze

The final stage within the SEEKR2 framework involves analyz-
ing the results obtained from the simulations. This stage en-
ables the construction of kinetics and thermodynamics pro-
files for the studied process. To execute the post-simulation
SEEKR2 analysis:

python ~/seekr2/seekr2/analyze.py \
SEEKR_simulation/model.xml

AG(milestone) (kcal/mol)

0 2 4 6 8 10
milestones

Figure 8. Free energy profile per milestone (AG;) obtained from the
SEEKR2 milestoning method for the trypsin-benzamidine complex.

The analyze.py script takes the model.xml file as an argu-
ment. It constructs the milestoning model, populates it with
transition probabilities and simulation times within each
milestone, and computes error margins. For a detailed
understanding of the MMVT error margins, please refer to

21 of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

the SEEKR2 manuscript [12]. Figure 8 shows the free energy
profile per milestone for the trypsin-benzamidine complex,
obtained by executing the analyze.py script.

6 SEEKR2 benchmarking

Benchmarking simulations were performed on a Linux
machine with an NVIDIA Quadro RTX 5000 GPU with 16 GB
RAM and an Intel Xeon W-10885M CPU. SEEKR2 milestoning
simulations were run using the OpenMM version 7.7 for all
the seven host-guest complexes and the trypsin benzami-
dine complexes, using 1 GPU with CUDA version 10.2. Table
1 describes the benchmarking results.

Receptor-ligand complex Benchmark
(ns/day)
BCD-1-butanol (5358 atoms) 569.60
BCD-1-napthylethanol (5362 atoms) 544.92
BCD-1-propanol (5361 atoms) 540.00
BCD-2-napthylethanol (5368 atoms) 526.27
BCD-aspirin (5361 atoms) 559.68
BCD-methyl butyrate (5360 atoms) 556.87
BCD-terbutanol (5358 atoms) 564.95
Trypsin-benzamidine (23036 atoms) 171.11

Table 1. Benchmarking rates for SEEKR2 simulations performed on
the seven host-guest complexes and the trypsin-benzamidine com-
plex performed on a single NVIDIA Quadro RTX 5000 GPU.

7 Conclusion

SEEKR2 has emerged as a multiscale simulation tool de-
signed to increase the speed and efficiency of calculating
kinetic and thermodynamic properties of receptor-ligand
binding and unbinding. This tutorial covers the underlying
theory behind SEEKR2, describing how kinetic and ther-
modynamic properties are calculated. Beginning with the
installation and setup, this manuscript guides the readers
through the processes of preparing SEEKR2 simulations,
highlighting essential options such as equilibration steps
and adjusting the speed of HIDR simulations. The subse-
quent sections then provide a detailed walkthrough of the
run and analysis stages, emphasizing the significance of
files like model.xml and scripts like run.py and analyze.py.
Having achieved the learning outcomes outlined at the
beginning, this tutorial is a comprehensive guide to installing
and running SEEKR2 simulations, ensuring that even those
unfamiliar with SEEKR2 can navigate its various features. We
expect researchers are now well-positioned to apply SEEKR2
to their systems of interest.

Abbreviations

SEEKR: Simulation-enabled estimation of kinetic rates
SEEKR2: Simulation-enabled estimation of kinetic rates version 2
BD: Brownian dynamics

MD: Molecular dynamics

NAMD: Nanoscale molecular dynamics

VMD: Visual molecular dynamics

kon: Association rate constant

Kogf: Dissociation rate constant

CUDA: Compute unified device architecture

GPU: Graphics processing unit

CPU: Central processing unit

RCSB: Research collaboratory for structural bioinformatics
APBS: Adaptive Poisson-Boltzmann solver

MFPT: Mean first-passage time

MMVT: Markovian milestoning with Voronoi tessellations
PDB: Protein data bank

CV: Collective variable

COM: Center of mass

BSD: Berkeley software distribution

API: Application programming interface

SMD: Steered molecular dynamics

HIDR: Holo insertion by directed restraints

RAMD: Random acceleration molecular dynamics

HF-DFT: Hartree-Fock with density functional theory
GAMESS: General atomic & molecular electronic structure sys-
tem

MP2: Mgller-Plesset 2

AM1-BCC: Austin model 1 with bond charge correction
HMR: Hydrogen mass repartitioning

AMU: Atomic mass unit

frcmod: Parameter modification file

TIP3P: Transferable intermolecular potential with 3 points
TIP4Pew: Transferable intermolecular potential with 4 points
with Ewald techniques

RAM: Random-access memory

RTX: Real-time ray tracing

Author Contributions

AA Ojha conceptualized and wrote the tutorial journal and is
a developer of the SEEKR2 package. LW Votapka is the lead
developer of the SEEKR2 package. GA Huber contributed to
the Brownian dynamics section in the tutorial. RE Amaro pro-
vided support with computing resources. LW Votapka and RE
Amaro provided guidance for tutorial development. S Gao ex-
tensively tested the SEEKR2 installation by following the tuto-
rial and helped debug the instructions for installing, running,
and analyzing SEEKR2 simulations.

Other Contributions

For a more detailed description of contributions from the
community and others, see the GitHub issue tracking and
changelog at https://github.com/anandojha/SEEKR _tutorials.

22 of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://github.com/anandojha/SEEKR_tutorials
https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

Author Information

ORCID:

Anupam Anand Ojha: 0000-0001-6588-3092
Lane William Votapka: 0000-0002-0865-5867
Gary Alexander Huber: 0000-0002-5936-6184
Shang Gao: 0009-0002-3961-5064

Rommie Amaro: 0000-0002-9275-9553

Potentially Conflicting Interests

The authors declare no conflicting interests.

Funding Information

AA Ojha acknowledges the support of the Molecular Sciences
Software Institute (MolSSI) fellowship under the National Sci-
ence Foundation (NSF) grant OAC-1547580. GA Huber ac-
knowledges support from National Institutes of Health (NIH)
GM31749 and University of California San Diego. RE Amaro
acknowledges support from NSF Extreme Science and Engi-
neering Discovery Environment (XSEDE) CHE060063 and NIH
GM132826.

References
[11 Amaro RE, Mulholland AJ. Multiscale Methods in Drug Design

[2

]

—

Bridge Chemical and Biological Complexity in the Search for
Cures. Nature Reviews Chemistry. 2018; 2(4):0148.

Jagger BR, Ojha AA, Amaro RE. Predicting Ligand Binding Kinet-
ics Using a Markovian Milestoning with Voronoi Tessellations
Multiscale Approach. Journal of Chemical Theory and Compu-
tation. 2020; 16(8):5348-5357.

Ojha AA, Srivastava A, Votapka LW, Amaro RE. Selectivity and
Ranking of Tight-Binding JAK-STAT Inhibitors Using Markovian
Milestoning with Voronoi Tessellations. Journal of Chemical
Theory and Computation. 2023; 63(8):2469-2482.

Zuckerman DM, Chong LT. Weighted Ensemble Simulation: Re-
view of Methodology, Applications, and Software. Annual Re-
view of Biophysics. 2017; 46:43-57.

Miao Y, Feher VA, McCammon JA. Gaussian Accelerated Molec-
ular Dynamics: Unconstrained Enhanced Sampling and Free En-
ergy Calculation. Journal of Chemical Theory and Computation.
2015; 11(8):3584-3595.

Kokh DB, Doser B, Richter S, Ormersbach F, Cheng X, Wade
RC. AWorkflow for Exploring Ligand Dissociation from a Macro-
molecule: Efficient Random Acceleration Molecular Dynamics
Simulation and Interaction Fingerprint Analysis of Ligand Trajec-
tories. The Journal of Chemical Physics. 2020; 153(12):125102.

Ojha AA, Thakur S, Ahn SH, Amaro RE. DeepWEST: Deep Learn-
ing of Kinetic Models with the Weighted Ensemble Simulation
Toolkit for Enhanced Sampling. Journal of Chemical Theory and
Computation. 2023; 19(4):1342-1359.

[8]

[9

—

[10]

Ahn SH, Ojha AA, Amaro RE, McCammon JA. Gaussian-
Accelerated Molecular Dynamics with the Weighted Ensemble
Method: A Hybrid Method Improves Thermodynamic and Ki-
netic Sampling. Journal of Chemical Theory and Computation.
2021; 17(12):7938-7951.

Lee CT, Amaro RE. Exascale Computing: A New Dawn for Com-
putational Biology. Computing in Science & Engineering. 2018;
20(5):18-25.

Votapka LW, Jagger BR, Heyneman AL, Amaro RE. SEEKR:
Simulation Enabled Estimation of Kinetic Rates, a Computa-
tional Tool to Estimate Molecular Kinetics and Its Application
to Trypsin-Benzamidine Binding. The Journal of Physical Chem-
istry B. 2017; 121(15):3597-3606.

[11] Jagger BR, Votapka LW, Amaro RE. SEEKR: Simulation Enabled

[12]

[13] Jagger BR, Lee CT, Amaro RE.

[14]

[15]

[16]

(171

(18]

191

[20]

[21]

Estimation of Kinetic Rates, A Multiscale Approach for the Cal-
culation of Protein-Ligand Association and Dissociation Kinetics.
Biophysical Journal. 2018; 114(3):42a.

Votapka LW, Stokely AM, Ojha AA, Amaro RE. SEEKR2: Versa-
tile Multiscale Milestoning Utilizing the OpenMM Molecular Dy-
namics Engine. Journal of Chemical Information and Modeling.
2022; 62(13):3253-3262.

Quantitative Ranking of Lig-
and Binding Kinetics with a Multiscale Milestoning Simulation
Approach. The Journal of Physical Chemistry Letters. 2018;
9(17):4941-4948.

Ahn SH, Jagger BR, Amaro RE. Ranking of Ligand Binding Ki-
netics Using a Weighted Ensemble Approach and Comparison
with a Multiscale Milestoning Approach. Journal of Chemical
Information and Modeling. 2020; 60(11):5340-5352.

Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y,
Beauchamp KA, Wang LP, Simmonett AC, Harrigan MP, Stern
CD, et al. OpenMM 7: Rapid Development of High Performance
Algorithms for Molecular Dynamics. PLoS Computational Biol-
ogy. 2017; 13(7):e1005659.

WangJ, Wang W, Kollman PA, Case DA. Antechamber: An Acces-
sory Software Package for Molecular Mechanical Calculations. J
Am Chem Soc. 2001; 222(1).

Salomon-Ferrer R, Case DA, Walker RC. An Overview of the Am-
ber Biomolecular Simulation Package. Wiley Interdisciplinary
Reviews: Computational Molecular Science. 2013; 3(2):198-
210.

Huber GA, McCammon JA. Browndye: A Software Package for
Brownian Dynamics. Computer Physics Communications. 2010;
181(11):1896-1905.

Huber GA, McCammon JA. Brownian Dynamics Simulations of
Biological Molecules. Trends in Chemistry. 2019; 1(8):727-738.

Muhiz-Chicharro A, Votapka LW, Amaro RE, Wade RC. Brown-
ian Dynamics Simulations of Biomolecular Diffusional Associa-
tion Processes. Wiley Interdisciplinary Reviews: Computational
Molecular Science. 2023; 13(3):e1649.

Ermak DL, McCammon JA. Brownian Dynamics with Hydro-
dynamic Interactions. The Journal of Chemical Physics. 1978;
69(4):1352-1360.

23 0of 24

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://orcid.org/0000-0001-6588-3092
https://orcid.org/0000-0002-0865-5867
https://orcid.org/0000-0002-5936-6184
https://orcid.org/0009-0002-3961-5064
https://orcid.org/0000-0002-9275-9553
https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

A LiveCoMS Training Article

[22] Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE,
Brookes DH, Wilson L, Chen J, Liles K, et al. Improvements to
the APBS Biomolecular Solvation Software Suite. Protein Sci-
ence. 2018; 27(1):112-128.

[23] Luty BA, McCammon JA, Zhou HX. Diffusive Reaction Rates
from Brownian Dynamics Simulations: Replacing the Outer Cut-
off Surface by an Analytical Treatment. The Journal of Chemical
Physics. 1992; 97(8):5682-5686.

[24] Northrup SH, Allison SA, McCammon JA. Brownian Dynamics
Simulation of Diffusion-Influenced Bimolecular Reactions. The
Journal of Chemical Physics. 1984; 80(4):1517-1524.

[25] Vanden-Eijnden E, Venturoli M, Ciccotti G, Elber R. On the As-
sumptions Underlying Milestoning. The Journal of Chemical
Physics. 2008; 129(17).

[26] Bello-Rivas)M, Elber R. Exact Milestoning. The Journal of Chem-
ical Physics. 2015; 142(9).

[27] Elber R. Milestoning: An Efficient Approach for Atomically De-
tailed Simulations of Kinetics in Biophysics. Annual Review of
Biophysics. 2020; 49:69-85.

[28] Ojha AA, Votapka LW, Amaro RE. QMrebind: Incorporat-
ing Quantum Mechanical Force Field Reparameterization at
the Ligand Binding Site for Improved Drug-Target Kinetics
Through Milestoning Simulations. Chemical Science. 2023;
14(45):13159-13175.

24 of 24 https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359
Living J. Comp. Mol. Sci. 2024, 5(1), 2359

https://doi.org/https://doi.org/10.33011/livecoms.5.1.2359

	Introduction
	Scope of tutorials
	Learning outcomes

	Prerequisites
	Background knowledge and experience
	Software and hardware requirements

	Background and Theory
	Brownian dynamics
	Markovian milestoning with Voronoi tessellations
	The SEEKR2 workflow

	SEEKR2 Installation
	Creating a new conda environment
	Installing SEEKR2 dependencies
	Installing Browndye
	Conda installation of SEEKR2
	Installing SEEKR2-OpenMM plugin
	Installing SEEKR2
	Installing Seekrtools

	Installing SEEKR2 from source
	Installing OpenMM from source
	Installing SEEKR2-OpenMM plugin from source
	Installing SEEKR2
	Installing Seekrtools

	SEEKR2 tutorials
	Basic Tutorial: -cyclodextrin (host)-guest complexes
	Advanced Tutorial: Trypsin-benzamidine complex

	SEEKR2 benchmarking
	Conclusion

