
A LiveCoMS Tutorial

Introduction to In Silico Synthesis of
Polymers via PySIMM [Article v1.0]
Alexander G. Demidov1,2,3*, B. Lakshitha A. Perera1,2,3, Michael E. Fortunato1,2,3,
Sibo Lin4, Coray M. Colina1,2,3,5*

1Department of Chemistry, University of Florida, Gainesville, FL 32611, USA; 2George
and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, FL
32611, USA; 3Center for Macromolecular Science and Engineering, University of Florida,
Gainesville, FL 32611, USA; 4Aramco Services Company: Aramco Research Center -
Boston, 400 Technology Square, Cambridge, MA, 02139, USA; 5Department of Materials
Science and Engineering, University of Florida, Gainesville, FL 32611

This LiveCoMS document is
maintained online on
GitHub at https:
//github.com/AlleksD/
pysimm_lcms_guide; to
provide feedback,
suggestions, or help
improve it, please visit the
GitHub repository and
participate via the issue
tracker.

This version dated
November 8, 2022

Abstract Pysimm is a framework for molecular simulations of polymers and polymer-based
nanostructures, which enables their direct chemical synthesis and preparation. Pysimm facili-
tates the understanding of novel, amorphous, processable materials for a broad range of applica-
tions, including heterogeneous catalysts, adsorbents, and gas storagematerials, as well as protein-
polymer conjugates. This tutorial provides a detailed guide on the construction of atomistic and
united-atommodels of polymers using Pysimm: an open-source Python Application Programming
Interface formolecular simulations. The API complements and simplifies the work of widely known
molecular simulation software, such as LAMMPS, CASSANDRA, NAMD, and Amber. Readers should
be familiar with the basic concepts of molecular simulations, as well as the basic knowledge of
Python programming language, before attempting to follow this tutorial. This work is separated
into 3 main sections. First, the process of building an atomistic model of a polymer chain from
its repetitive units is described. The second section shows how to work with existing force fields,
and how Pysimm can automatically read, recognize, and assign appropriate force field parameters
to a molecule. The final section discusses how to use Pysimm to construct polymer chains with
pre-specified tacticity. The section is also available in the form of an interactive Jupyter notebook
tutorial outlining simple guidelines to construct polymer models.

*For correspondence:
alleks.g.d@ufl.edu (AD); colina@chem.ufl.edu (CMC)

1 Introduction
Molecular dynamics (MD) simulations have traditionally
been used to study the dynamics of a broad set of systems,
from native protein structures to polymeric materials, at
both the all-atom and coarse-grain levels of detail [1, 2].
Recent advances in this area have expanded into study-
ing protein-polymer hybrids where polymers were either

covalently or non-covalently attached to proteins [3]. Demys-
tifying protein-polymer interactions, dynamic changes over
time, and subtle initiator- or polymer-induced changes to
protein structure through MD is central to these goals [4, 5].
Therefore, integrated platforms need to be developed that
can in part retain the detailed resolution of atomistic simula-
tions while expanding the accessible time and length scales

1 of 13

https://github.com/AlleksD/pysimm_lcms_guide
https://github.com/AlleksD/pysimm_lcms_guide
https://github.com/AlleksD/pysimm_lcms_guide
alleks.g.d@ufl.edu
colina@chem.ufl.edu

A LiveCoMS Tutorial

required for a thorough and efficient study of molecular
chimeras. Although many force fields (FFs) in the biomolec-
ular and small molecule communities are optimized using
specific water models to reproduce properties under condi-
tions of interest, some water models clearly perform better
in representing the general properties of water than others.
Moreover, for polymer-water systems, choosing the correct
FF for polymers is often ambiguous, and thorough validation
with experimental data is often needed [6–10]. For example,
recent work has led to the trustworthiness (through devel-
opment and validation) of appropriate FFs for PEGylated
proteins at the atomistic- and meso-level scales [11, 12]. A
major limitation in the development of molecular simulation
models for water-soluble polymers and protein-polymer
conjugates is the lack of FFs for non-PEG-like water-soluble
polymers of interest, as well as the lack of experimental
data to validate FFs [4, 10]. To approach the study of these
complex polymeric materials from an atomistic molecular
simulation standpoint, it is essential that the FFs used can
accurately capture the critical polymer-water interactions,
as well as the tacticity of such polymer chains. This in
turn necessitates a detailed FF analysis, for both polymer
and water, to validate that the models implemented are
sampling the appropriate conformational space prior to
being utilized to aid in the design of new polymeric materials
and protein/polymer complexes.

To enable such simulations, we developed and made
available to the broader community, a Python based
Simulation Interface for Molecular Modeling, PySIMM
[13–15]. The interface is an open source Python package
designed to assist in the setup and execution of molecular
simulations through a high-level application program inter-
face (API) and an abstraction from underlying third-party
simulation software. So far it includes the ability to perform
molecular dynamic simulations (using the LAMMPS engine
[16]), Monte Carlo simulations (using the CASSANDRA
software [17]), and a few types of fractional free volume
analyses (provided by Poreblazer [18] and/or Zeo++ [19]
software). Particularly, the versatile interface with LAMMPS
has enabled the use of PySIMM to efficiently perform tests
between multiple FFs. These tests are an essential step to
identify and validate the most appropriate FFs to accurately
model complex systems. As such, apart from being used
for different studies involving simulations of atomic-scale
polymer models [20–22] PySIMM had recently expanded
[15] to build polymer models convenient for bioconjugates
modeling as described in this tutorial.
1.1 Scope
This tutorial is separated into 3 parts and will walk the reader
through the entire process of building an atomic-level model

of a polymer chain (or a polymermelt) from scratch. The first
part is concentrated on the basics of pysimm that allow the
reader to build a ’small’ molecule as a repetitive unit that
can be later used in the construction of a macromolecule.
In this, we introduce basic pysimm abstractions and list the
ways in which a molecule can be imported to pysimm rep-
resentation. The second part discusses the work with FF pa-
rameters and the extent to which pysimm can automatically
read, recognize, and assign appropriate FF parameters to a
molecule. We will use an example simulation setup to illus-
trate how to apply/switch a FF for a molecular system using
GAFF2 [23, 24], and the CHARMMgeneral force field (CGenFF)
[25–27]. Finally, the third part discusses the utilization of the
force field assisted random walk application, and its modifi-
cations to build a macromolecule. In this part, we specifically
focus on the tacticity properties of the constructed polymer
chains. Tacticity refers to the relative stereochemistry of ad-
jacent chiral centers of a macromolecule [28]. In a polymer,
it can influence the melting temperature, solubility and poly-
mer mechanical properties. Polymers are usually identified
as isotactic, syndiotactic, or atactic.

The present work is designed to give the readers a
relatively simple, yet versatile instrument to build their own
atomistic-scale models of polymers with precise control
over the chain length (or polydispersity index), monomer
sequence in copolymers, and polymer chain tacticity.

2 Prerequisites
2.1 Background knowledge
The tutorial aims to describe the basic concepts for working
with the API for molecular modeling. Correspondingly, read-
ers are expected to be familiar with the basic concepts of
atomistic molecular simulations such as (i) functional forms
of common class-I FFs and their representation of van der
Waals and electrostatic interactions; (ii) basic information
about the way theMD equations are integrated, i.e. themost
appropriate integration schemes, optimal time step and
other possible integration settings; (iii) additional positional
constraints that are often imposed on a molecular system
(e.g. application of the SHAKE algorithm for the simulation
of water models).
2.2 Software/system requirements
In this tutorial, we use some basic definitions of the object-
oriented programming paradigm such as “object”, “class”,
“method”, and so on. The reader is referred to any standard
resource of object-oriented programming, e.g. the Oracle
documentation page [29], if they are not familiar with the
terminology.

As readers will work with a Python-based API, the basic

2 of 13

A LiveCoMS Tutorial

knowledge of Python programming language such as: (i) con-
structors of basic dynamic data structures (lists, sets, and dic-
tionaries), (ii) functions and their arguments, (iii) strings and
basic file input/output are required. The main tool that pro-
vides the means for molecular simulations is LAMMPS. Thus
the next section briefly discusses how to obtain the pysimm
code, and integrate it with LAMMPS (either existing or freshly
installed). LAMMPS is broadly recognized and utilized by the
materials science and polymer communities. A key reason
for choosing LAMMPS is its versatility in solving non-standard
molecular dynamics problems. Its rich input syntax enables
the formulation of complex problems within the input script
level (with which pysimm generally interfaces). Additionally,
its rich library comprises around 100 models and over 300
pair styles as of 2016 [30].

Please note that all instructions are fit for Linux dis-
tributions (Ubuntu, OpenSUSE, and CentOS distributions
had been tested) and had not been tested on Windows.
However, tools like Cygwin and other Linux environment
emulators likely can cover the functionality that is necessary
to run pysimm with LAMMPS on Windows.
2.2.1 Docker image with pysimm deployed
One convenient way to use pysimm is to work with the
Docker image. The image already contains pysimm and all
necessary software dependencies to run this tutorial, so if
you choose to work with the image there is no need to install
pysimm to your OS, as described below in this section.

The Dockerfile.txt instructions to build the corresponding
image are in the root folder of the pysimm distribution. The
routine for building and using the Docker image is standard.
To build the Docker image from the file, run the following
from the root pysimm directory (optionally changing my_tag

to any meaningful text tag of your image):
$ docker build -t pysimm : my_tag -f Dockerfile

$PWD

This will create a Docker image based on the Debian 10
Linux distribution with pysimm and pre-installed LAMMPS,
CASSANDRA, Zeo++ v0.3, and PoreBlazer v4.0. If the build is
successful the list of your Docker images will contain freshly
built pysimm image. The full list can be seen by running the
docker images command.

After the successful build, run the corresponding pysimm
image in bash mode:

$ docker run -it pysimm : my_tag bash

The pysimm source files are kept in /usr/local/pysimm

folder. Thus one can quickly test the LAMMPS or CASSANDRA
modules by running one of the examples, for instance:

$ cd /usr/ local / pysimm
$ cd Examples /08 _ethanol_acetone_mixture

$ python run.py

The successful run of the example will create input
text files called ’mixture.*’ which contain the simulated
equilibrated ethanol/acetone mixture.
2.2.2 Native pysimm installation
This subsection describes how to install pysimm on your op-
erating system directly. We recommend the user consider
installing pysimm in a separate Python virtual environment.
The separate environment will detach the Python core and
Python libraries files installed for pysimm from files that you
might install in the future for other projects. Some of the
most common instruments for these installations are venv

[31] and conda [32]. Please follow the corresponding refer-
ences for details on virtual environment setup and installa-
tion.

To get started, clone the pysimm repository from GitHub:
$ git clone

https :// github .com/ polysimtools / pysimm

If the package manager of your operating system is APT,
then the script complete_install.py can be used to configure
pysimm, install LAMMPS from their git repository, and
configure the integration between the two software. For
that, navigate into the cloned pysimm directory and run the
complete_install.py. The --pysimm command line argument
passed to the script should be the path to which you cloned
the pysimm repository (one directory up). The --lammps

argument is the path to which LAMMPS will be cloned and
installed.

Thus, the following example assumes the user cloned the
repository directly to their home directory, and will install
LAMMPS to the home directory as well.

$ python pysimm / complete_install .py --pysimm
$PWD --lammps $PWD

Parts of pysimm require the use of the numpy package.
To use the complete_install.py script to install numpy as well,
include the --apt-install command line argument.

$ python pysimm / complete_install .py --pysimm
$PWD --lammps $PWD --apt - install

For the manual installation (without using com-
plete_install.py) please do the following. After pysimm is
cloned from GitHub, add the path to the pysimm directory
to your PYTHONPATH, and the path to pysimm/bin to your PATH

variables.
2.2.3 Notes on LAMMPS installation
If you are using your own build of LAMMPS, be sure that
the following packages were included in your installation as
some functionalities in the example scripts require a subset

3 of 13

A LiveCoMS Tutorial

of these packages: (1) molecule; (2) kspace; (3) user-misc; (4)
misc; (5) qeq; and (6)manybody.

Pysimm can integrate seamlessly with relevant parts
of the LAMMPS simulation software package through the
pysimm.lmps module. To configure the integration, locate
your LAMMPS executable. For example, if the path to your
LAMMPS executable is /usr/bin/lmp_mpi, add this path as an
environment variable LAMMPS_EXEC:

$ export LAMMPS_EXEC =/ usr/bin/ lmp_mpi

The user can consider adding all environmental variables to
their .bashrc file to have them defined permanently.
2.2.4 Other Python packages required
The latest pysimm distribution includes a "Jupyter notebook"
example that covers the last part of this tutorial. The exam-
ple in the notebook form provides an interactive media to
work i.e. with the repetitive units that are provided, or more-
over, new repetitive units, hence allowing the users to make
their own polymer models. The Jupyter notebook environ-
ment can be easily installed with any Python package man-
ager (e.g. pip or anaconda). The visualization in the code part
of this tutorial is relying on two (possibly) external Python
packages: Matplotlib for basic plotting, and NGLView for
in-code molecular visualization.

3 Content and links
The examples included in the tutorial along with several
other examples, and the API code templates are available
at https://github.com/polysimtools/pysimm pysimm GitHub
repository or can be downloaded from the pysimm web
page: https://pysimm.org/download/. Detailed pysimm
documentation is available through its ReadTheDocs page
https://pysimm.readthedocs.io. Alternatively, all the ma-
terials only referent for this tutorial are available in a
separate GitHub repository dedicated to this tutorial article
https://github.com/AlleksD/pysimm_lcms_guide.
3.1 Tutorial I: Basic molecule managing and

system building in pysimm
First, we will create an empty system.System object and store
this in a variable s. This system object will contain and orga-
nize all of our molecular data:

s = system . System ()

Figure 1 shows the sketch of the created system.System object
schematically displaying its structure (fields and their cross-
references) that we will set up in this tutorial.

Next, we need to add a molecule to our system. By de-
fault, our system s has a container object s.molecules that we
need to add our newmolecule to. We create a newmolecule

Figure 1. Schematic representation of the system.System object thatmarks major fields of the object and their cross-references.

object, system.Molecule(), and pass this to the molecule con-
tainer class method s.molecules.add(). This function returns
the newly added object to the container, and we store this in
variable m.

m = s. molecules .add(system . Molecule ())

Now that we have a place to contain all of our molecu-
lar data, we need to obtain data describing interactions be-
tween atoms from a force field. A forcefield.Forcefield ob-
ject contains the parameters necessary to calculate the en-
ergy of your system as well as the logical typing rules for as-
signing the atom types to the particles of our system. In this
example, we will use the GAFF2 force field and instantiate a
Gaff2 force field object that will be stored in variable f:

f = forcefield . Gaff2 ()

This example assumes the user’s knowledge on the
GAFF2 atom types that are required for a methane molecule:
i.e. "c3" and "hc". Let’s get the system.ParticleType objects
from our forcefield.Gaff2 object that represents these atom
types. Our forcefield.Gaff2 object has a container object
f.particle_types that organizes system.ParticleType objects
and provides a method f.particle_types.get() to retrieve
specific atom types based on names. The function returns a
list of system.ParticleType objects, but in this example only
one object is returned so we access the first element of the
list. Instead of adding the system.ParticleType from f, we cre-
ate a copy and pass this newly created system.ParticleType

to a method that adds it to the particle type container object
in our system s.particle_types. The s.particle_types.add()

method returns the newly added object, which we store as

4 of 13

https://github.com/polysimtools/pysimm
https://pysimm.org/download/
https://pysimm.readthedocs.io
https://github.com/AlleksD/pysimm_lcms_guide

A LiveCoMS Tutorial

the GAFF2 atom type object representation.
gaff_c3 = s. particle_types .add(

f. particle_types .get(’c3 ’)[0]. copy ())
gaff_hc = s. particle_types .add(

f. particle_types .get(’hc ’)[0]. copy ())

Now we have a System object, s, a Molecule object that is
stored in our system, m, and two GAFF2 atom type objects,
gaff_c3 and gaff_hc. Let’s start adding atoms.

First, we create the carbon atom (particle) at the origin.
Initially, we will add the particle with zero charge, and will
derive partial charges later. We instantiate a system.Particle

object using keyword arguments to set the atom’s coordi-
nates x, y, z, the charge, the molecule this particle is a part
of, and most importantly, the particle type, gaff_c3. Notice
that this is a reference to our system.ParticleType object that
is in our system.Systemobject, andnot the forcefield.Gaff2ob-
ject. Again we use a container add method to add our new
particle to the particles container, and store the newly added
particle in variable c1.

c1 = s. particles .add(system . Particle (
type=gaff_c3 , x=0, y=0, z=0, charge =0,
molecule =m))

The method add_particle_bonded_to of a system.System

object allows the users to add a new particle that should
be bonded to an existing particle in the system. If a force
field object is also passed into this method, then the new
bonds, angles, and dihedrals will be created as necessary.
The location of the new atom is selected randomly within
a carbon-carbon bond length radius around the "parent"
particle, and we will later use LAMMPS to perform structural
optimization. For each hydrogen atom we want to add, we
create a new system.Particle object, with zero charge and
the gaff_hc type. We also need to identify this as a part of the
molecule that already exists, m. This system.Particle object
is passed to s.add_particle_bonded_to() as the first argument.
The second argument is the particle that already exists in our
system, in this case, c1. The third argument is a reference to
our forcefield.Gaff2 object. The s.add_particle_bonded_to()

method returns the newly added object, which we store as
h1, h2, h3 and h4.

h1 = s. add_particle_bonded_to (
system . Particle (type=gaff_hc , charge =0,
molecule =m), c1 , f)

h2 = s. add_particle_bonded_to (
system . Particle (type=gaff_hc , charge =0,
molecule =m), c1 , f)

h3 = s. add_particle_bonded_to (
system . Particle (type=gaff_hc , charge =0,
molecule =m), c1 , f)

h4 = s. add_particle_bonded_to (
system . Particle (type=gaff_hc , charge =0,
molecule =m), c1 , f)

Nowwe have added the particles to our system, but there
is currently no simulation box. The system.System object has a
method to construct a simulation box surrounding the atoms
it contains, and optionally we can add padding around our
molecule. Here we opt to use a padding of 10 angstroms.

s. set_box (padding =10)

Before we optimize our structure, LAMMPSwill need to know
what type of pair, bond, and angle interactions we are using.
These can be defined as string attributes of our system.System

object.
s. pair_style =’lj ’
s. bond_style =’harmonic ’
s. angle_style =’harmonic ’

We will use the fire minimization algorithm implemented
in LAMMPS. The lmps module in pysimm contains a series of
shortcut methods to run some types of molecular mechan-
ics simulation. In this case, we will use lmps.quick_min() to si-
multaneously set up and run the energy optimization of the
system. The method requires the system object s, and the
minimization style min_style we want to use. Also, we will
give each simulation a name so that all log files are kept in
separate files.

lmps. quick_min (s, min_style =’fire ’,
name=’fire_min ’)

A more detailed discussion of the molecular mechanics sim-
ulation is in the next tutorial. The system.System class also has
variousmethods to format our system data into different file
types. Here we will output a PDB (protein data bank), and
LAMMPS data file formats:

s. write_lammps (’methane .lmps ’)
s. write_pdb (’methane .pdb ’)

3.2 Tutorial II: Automatic force field
assignment and MD simulations setup

Construction of the whole system from scratch is clearly not
the only option for creating the molecular mechanics sim-
ulation setup in pysimm. A much more common scenario
is loading data from a text file to create the initial system
(or several systems) which are then updated, modified, and
merged using the API. Table 1 lists text file formats common
in computational chemistry that can be used to construct the
system.System objects in pysimm. The files are read by the col-
lection of static methods of system module which have name
templates system.read_***.

Another utility that pysimm provides for the convenient
construction of small molecules is the interface to a Pub-
Chem database of compounds accessible through a RESTful
API [33]. The interface allows users to create system.System

5 of 13

A LiveCoMS Tutorial

objects from a PubChem SMILES query. In this example,
we will use the SMILES string "CCO" to generate an ethanol
molecule using the system.read_puchem_smiles() method. The
function makes an HTTP request to the PubChem server,
which returns an ASCII response formatted as a .mol file. The
text is interpreted as a system.System object that we store
in variable ethanol. This system now contains elemental
composition bond connectivity and bond orders.

ethanol = system . read_pubchem_smiles (’CCO ’)

For this example to construct the model of the acetone
molecule (the second specie of the mixture) let’s use
system.read_pdb() method to read the coordinates and
topology information from the pdb-formatted text file and
store the resulting system.System object in the variable with
the corresponding name.

acetone = system . read_pdb (’acetone .pdb ’)

The next step is the application of the force field. We will
need to use a FF object more than once, so we create a refer-
ence to it by instantiating the object and storing a reference
to it in variable f.

f = forcefield . Gaff2 ()

Our system.System objects ethanol and acetone con-
tain a class method apply_forcefield() that accepts a
forcefield.Forcefield object and automatically assigns force
field parameters to systems. In this example, we use our
previously created forcefield.Gaff2 object and pass it to the
apply_forcefield() function, as well as specify that we would
like to derive Gasteiger charges [34].

ethanol . apply_forcefield (f,
charges =’gasteiger ’)

acetone . apply_forcefield (f,
charges =’gasteiger ’)

Pysimm has a convenient method that inserts Nkmolecules of k different types in a simulation box. The
method is called system.replicate, it requires a list con-
taining the molecules and a list specifying the number of
molecules of each type to insert. Additionally, it also takes
density input in g/mL to set up the simulation box. Let’s
use it to make an initial box with a 1-to-1 ethanol/acetone
mixture.

s = system . replicate ([ethanol , acetone],
[200 , 200] , density =0.3)

Now that we have the initial system with molecules
packed in a box, let’s equilibrate it in 4 short steps. First, we
carry out the energy minimization. Then we run 3 separate
instances of molecular dynamics using the default 1 fs inte-
gration step for each: NVT MD for 10 ps at low density, and
two NPT MD simulations for 100 ps each. At the beginning

of the NVT simulation, we will generate new velocities at 100
K, and heat our system from 100 K to 300 K. At the beginning
of the first NPT simulation, we will re-generate new initial
velocities and start with a positive compressive pressure of
1000 atm which will be decreased to 1 atm during the run.
Finally, the second NPT simulation will be held at 1 atm and
300 K to generate some sampling data. The settings for
each of those simulation steps are configured as a simple
Python dictionary where keys closely follow the names of
corresponding commands in LAMMPS. The settings use
LAMMPS "real" system of units (time in fs, distance in Å,
energy in kcal/mol, see the LAMMPS documentation [35]),
and have default values defined for each keyword (see the
pysimm documentation).

min_settings = {’name ’: ’fire_min ’,
’min_style ’: ’fire ’}

nvt_settings = {’name ’: ’nvt_md ’,
’ensemble ’: ’nvt ’,

’t_start ’: 100 , ’t_stop ’: 300 , ’new_v ’:
True ,

’length ’: 10000 , ’timestep ’: 1}

npt1_settings = {’name ’: ’npt_md ’,
’ensemble ’: ’npt ’,

’temp ’: 300 , ’new_v ’: True ,
’p_start ’: 1000 , ’p_stop ’: 1,
’length ’: 100000 , ’timestep ’: 1}

npt2_settings = npt1_settings .copy ()
npt2_settings [’p_start ’] = 1

Let’s instantiate the LAMMPS simulation object that
governs the simulation process and will contain other
setting objects responsible for various aspects of the simu-
lation. Right away let’s add to the simulation container the
OutputSettings object which will define the style and print
frequency of LAMMPS simulation output.

sim = lmps. Simulation (s)
sim.add(lmps. OutputSettings (thermo ={ ’freq ’:

500 , ’style ’: ’custom ’,
’args ’: [’step ’, ’temp ’, ’etotal ’, ’press ’,

’density ’]}))

Next, we add an optimization object and a molecular
dynamics object using corresponding methods of the
lmps.simulation – they will be added to the LAMMPS script
(and thus executed) in the order they appear in the code.
Finally, we send the run command that starts the whole
simulation sequence.

sim. add_min (** min_settings)
sim. add_md (** nvt_settings)
sim. add_md (** npt1_settings)
sim. add_md (** npt2_settings)
sim.run ()

6 of 13

A LiveCoMS Tutorial

Table 1. The file formats supported in pysimm to import data into system.System object
Extension File format Method name Notes
json ChemDoodle JSON read_chemdoodle_json

xyz General XYZ record read_xyz

yaml YAML serialisation of
pysimm.system object

read_yaml

lmps LAMMPS input read_lammps Most developed and elaborate implementation.
Allows among others to store FF information

cml Chemical Markup Lan-
guage file

read_cml

mol MDL chemical table file read_mol Both ’V2000’ and ’V3000’ formats are supported
pdb Protein data bank file read_pdb Only particle position (’ATOM’, ’HETATM’) and

bond (’CONECT’) information is interpreted

In the present setup, it is easy to replace the GAFF-2
force field with a different one (one of the supported by
the API). To use a different FF one changes the reference
to the FF object: write f = forcefield.Charmm() instead of
f = forcefield.Gaff2(), and re-run the above workflow.

In the final part of this tutorial let’s see how the same equi-
libration simulations will differ if molecules are typed with a
different FF. As an example let’s use CHARMM general force
field (CGenFF). Similar toGAFF, pysimmcan automatically rec-
ognize and type the most common CGenFF atom types for H,
C, N, O, and S chemical elements.

After the simulations are finished we can parse the out-
put log file and draw the density of the system during the
overall 200 ps of both NPT runs. Figure 2 shows the den-
sity of the acetone-ethanol 1-to-1 mixture as read from the
LAMMPS logs of 2 similar NPT simulations that use GAFF2
and CGenFF force fields. The results are close to each other
and in this case, the difference is likely caused by the differ-
ence in the compatibility of corresponding FF with Gasteiger
partial charges.
3.3 Tutorial III: Simulated random walk

polymerization with pysimm
The previous examples were used to familiarize the reader
with pysimm. This section describes in detail, the motiva-
tion, computational algorithm, features, and efficiency of
the pseudo-random walk polymerization technique within
pysimm in par with a few other methods. Before pysimm,
the Polymatic algorithm [36] was one state-of-the-art in silico
polymerization technique that was capable of creating linear
polymer chains based on monomer repeating units. An
advantageous feature of Polymatic was the iterative updat-
ing of the bond topology defining polymer chains and the
execution of a simulation employing a molecular mechanics

Figure 2. Comparison of ethanol/acetone 1-to-1mixture density sim-ulatedwith the usage of GAFF2 andCGenFF forcefields. The LAMMPSsimulation setup and automatic FF typing are done in pysimm

force field. By performing structural optimization through
energy minimization the resulting chain geometry quality
was a function of the validity of themodel used, which in turn
enables the validation of different models using the same
methodology. One major drawback of Polymatic was the
randomness in how monomer units were connected. This
method can be compared to step-growth polymerization,
where at a given time, there will be a random distribution
of chain lengths; initially of many small chains, and near
completion, there are few, longer chains. At the end of this
algorithm, a molecular dynamics simulation is required to
allow the diffusion of oligomers without forming a new bond
before the final joining of the chain ends. Alternatively, in
configurational biased Monte Carlo (CBMC) [37, 38] chain
growth method, the configuration of the next repeating
units is sampled from a distribution, often using backbone
dihedral angles as a degree of freedom. In other words, for
CBMC, there are additional parameters that must be defined
outside of the scope of the force field. A third approach is to

7 of 13

A LiveCoMS Tutorial

sequentially add monomers to a growing chain, as in CBMC
combined with a molecular mechanics force field based
structure optimization as introduced by Polymatic. The force
field assisted linear self avoiding random walk application
built with pysimm implements this chain-growth analogous
algorithm with iterative bond relaxation, and will be used
below.
3.3.1 Preparing the repetitive unit
Let’s load the repetitive unit of the polymer creating
system.System object from a .pdb file that has ’CONECT’ in-
formation (pysimm can interpret this data to make bonds
between the atoms of the system). The system.read_pdb

method supports an additional string parameter that points
to the CHARMM stream (.str) file which can be used to
update the charges of the particles in the system.

sst = system . read_pdb (
’../ data/ cbma_monomer .pdb ’,
str_file =’../ data/ cbma_monomer .str ’)

To display the repetitive unit on the Jupyter canvas, let’s
use the NGLview package [39]. It also can show additional
label information for each atom; e.g. indexes of all atoms
of the system. Alternatively, if nglview is not available, we en-
courage the user to open the imported structure in any other
standalone molecular viewer (such as VMD [40] or Avogadro
[41]).

view = nglview . show_structure_file (
’../ data/ cbma_monomer .pdb ’)

view. add_label (color =’black ’, scale =1.3 ,
labelType =’text ’, zOffset =2.0 ,
attachment =’middle_center ’, labelText =
[str(pt.tag) for pt in sst. particles])

Figure 3 shows an example of the definition of the head
and tail atoms in the carboxybetaine methacrylate [CBMA]
repetitive unit. As shown above, the undercoordinated car-
bon atoms (carbons with incomplete valency) have indices 1
and 2. They will be the head (the atomwith which the current
repeating unit connects to the previous repeating unit) and
the tail (the atom to which the next repeating unit connects)
during the pysimm polymerization process. Let’s mark those
atoms with the corresponding text labels in our system

lnkr_atoms = {’head ’: 1, ’tail ’: 2}
for k, v in lnkr_atoms . items ():

sst. particles [v]. linker = k

Let’s type the repetitive unit with the basic pysimm
CGenFF automatic typing tool. The charges of all particles
were read from the .str file, so there is no need to reassign
them (if not, pysimm can do it using e.g. the Gasteiger
method)

ff = forcefield . Charmm ()
sst. apply_forcefield (ff , charges =None)

Figure 3. A detailed description of the atoms in the CBMA repetitiveunit, that is important for the polymerization and the tacticity ana-lyzer methods of pysimm.random_walk

3.3.2 Making the polymer and checking its tacticity
Once the FF atom types and charges are defined, one can
use the force field assisted random walk method. The
method requires the system.System object representing a
monomer, and the integer number of monomers to be
concatenated. The other optional (keyword) arguments
presented in the example define the density of the final
output system, flag to indicate to output the construction
trajectory (in .xyz format), and a flag to indicate whether
the final chain will be unwrapped. Let’s build a short (15
repetitive units) chain.

sngl_chain = random_walk (sst , 15,
forcefield =ff , density =0.01 , traj=False ,
unwrap =True)

Next, let’s check the tacticity of the created oligomer. The
check_tacticity() method of the random_walk application ana-
lyzes the local geometry of atoms for polymers. The method
returns the distribution of meso-to-racemo diads along the
backbone of the macromolecule (as shown in Figure 4).

The input parameters for the method are:
• A pysimm system that represents a macromolecule.
• A list with 4 integers that defines the indices of the node
atoms in a repetitive unit of themacromolecule. The in-
dices in their order represent: (1) the first atom of the
backbone; (2) the second atom of the backbone; (3) the
first atom of the first side chain (or methyl, or hydro-
gen); (4) the first atom of the second side chain. Note
that the colors of the atom indices match the colors of
the vectors in figure 4.

• Number of atoms (particles) in the repetitive unit of the
macromolecule

The second variable of the check_tacticity output is the
list that shows whether each two consecutive repetitive units
in the chain form either a meso (True) or a racemo (False)

8 of 13

A LiveCoMS Tutorial

Figure 4. Schematic representation of a meso and a racemo diadalong the polymer backbone. In the case of a meso diad both theblue-green-yellow vector triples of the two consecutive monomershave the same alignment, whereas in a racemo diad, one of theblue-green-yellow vector triples is right-handed while the other isleft-handed.

diad. Let’s examine the obtained chain and print the result
in the form of a simple 2-column histogram that shows the
number of meso and racemo diads in the chain. The indices
for the analyzed repetitive unit are highlighted in figure 3,
and they are 1, 2, 8, and 10.

tacticity_stat = check_tacticity (sngl_chain ,
[1, 2, 8, 10] , len(sst. particles))

In this case, among 15 monomers (thus 14 diads), we
see that most diads have a meso configuration (table 2,
(a)), meaning that the majority of the monomer pairs in the
chain have the same orientation. Only a very few monomer
pairs (10%-30%, depending on the run) will form racemo
diads. In this implementation of the random walk, there is
no explicit control of the following monomer orientation,
hence all monomers attached initially had to form meso
diads. However, due to the geometry optimization and short
MD simulations that are implemented in the random walk
method, the orientation of neighboring monomers occasion-
ally can switch, thus giving some number of racemo diads.
Therefore, depending on the strength of the energy barrier
for rotation, during longer MD simulations the polymer can
relax to an atactic state. However, pysimm can also allow
gaining more control over the polymer tacticity.
3.3.3 Polymerization with controlled tacticity
While polymers synthesized through conventional radical
polymerization are usually atactic, newer polymerization
catalysts are able to offer high purity syndiotactic or isotactic
polymers, often with markedly different physical properties.
In this part, let’s concentrate on building models of syndio-
tactic or isotactic polymers. We will use another method

which is called random_walk_tacticity, which allows the user
to define the orientation of the next attached monomer
during the polymer building phase. For that, some addi-
tional modifications should be done to the repetitive unit
that was used previously. The random_walk_tacticity method
requires a capped monomer, therefore let’s add capping
carbon atoms to the linker atoms of our repetitive unit
(atoms with tags 1 and 2, see figure 3). The capping atoms
(ones with tags 36 and 37 in figure 3) are dummy atoms, so
we can assign them any type. For convenience, let’s reuse
a type that is already present in our system: like ’CG321’

an sp3 hybridized carbon with 2 hydrogen atoms attached.
Moreover, the capping atoms will be undercoordinated, but
it is not important in this case, as they are dummy atoms
and will be removed during the simulated polymerization.

Both capping atoms should be decorated with an addi-
tional field named rnd_wlk_tag that contains a string with ei-
ther ’head_cap’ or ’tail_cap’ value, respectively. Finally, an-
other label linker=’mirror’ should be assigned to an atom of
the system; the atom with this label together with 2 labeled
atoms of the backbone will be used to build a mirror plane
for construction of the reflected repetitive unit for syndiotac-
tic insertion. In our case, the most convenient ’mirror’ atom
is the freshly added ’head_cap’ atom (it will be connected to
atom #1 to the vacant position of the tetrahedron formed by
atoms with tags 2, 6, and 7; see figure 3).

To shorten the tutorial text we do not list the whole code
that performs the aforementioned labeling, but only the
first and the last lines of it (please refer to the code in .py
or .ipynb files for the implementation with detailed inline
commentaries).

new_sst = sst.copy ()
captype = new_sst . particle_types .get(

’CG321 ’)[0]
...
new_sst . objectify ()

Note that the preparations written above are not needed
if capping atoms are already present in the initial structure
of the repetitive unit. Please, refer to example 12 of pysimm
distribution, where the tacticity-controlled polystyrene chain
is built (Examples/12_tacticities/polystyrene_nosim.py).

To control the tacticity of the chain, the method has
tacticity keyword argument that accepts a real number
n ∈ [0, 1], which defines the relative number of isotactic
insertions (note that generally for any value n ∈ (0, 1) the
polymer is considered atactic). Thus, n = 1 will be a fully
isotactic chain, n = 0 will be a syndiotactic chain, whereas
n = 0.5 will be a chain with an equal number of isotactic and
syndiotactic insertions. This method also accepts keyword
strings as values of tacticity key. One can use either n = 1 or
’isotactic’, n = 0 or ’syndiotactic’, and n = 0.5 or ’atactic’. For

9 of 13

A LiveCoMS Tutorial

more details and options of random_walk_tacticity method
please refer to the pysimm documentation.

First, let’s run the random_walk_tacticity in "no simulation"
mode. In that regime the next monomer will be put to an ap-
proximately correct, geometrically calculated position with-
out the FF optimization and NVE molecular dynamics simula-
tions.

polymer_nosim =
random_walk_tacticity (new_sst , 15,
forcefield =ff , sim=’no ’,
tacticity =’syndiotactic ’, density =0.01)

The result is a syndiotactic chain and all diads in this case
are clearly racemo- diads (table 2, (b)). Now let’s do the same
but with FF optimization of the growing polymer chain be-
tween every monomer insertion, and see how many diads
will be reconfigured from racemo- to meso- geometry.

polymer = random_walk_tacticity (new_sst , 15,
forcefield =ff , tacticity =0.0)

Table 2 (c) confirms that the optimization can change the
initial distribution of the monomer orientations. However,
the chain obtained with random_walk_tacticity has more
racemo diads than meso diads (as the example was based
on creating a syndiotactic polymer), compared to the chain
obtained by the original random_walk method (10%-30%).
Table 2. Racemo-to-meso diad ratio in a single pCBMA chaincontaining 15 repetitive units made with different methods of
pysimm.random_walk application.

Case Methods detail Ratio
(a) Standard random_walk() method 2-12
(b)

random_walk_tacticity() method
with no simulations applied 14-0

(c)
random_walk_tacticity() method
with simulations on 11-3

(d)
random_walk_tacticity() run with
a post-optimization 13-1

3.3.4 A setup to construct a polymer chain with
exact tacticity

In the previous section, it was shown that in pysimm, one
can easily construct a "no-simulation" polymer chain. The
simple chain (but illustrative for tacticity explanations) is
constructed by connecting the repetitive units to each other
without optimization or molecular dynamics step between
monomer additions. The tacticity of that chain is easy to set
to be exact, unlike the tacticity of a chain built with the FF
simulations enabled.

The robustness of the FF functional form allows one
to run the simulations using the polymer chain built by
random_walk_tacticity with no_sim flag on as an initial struc-
ture. Long enough MD simulation with the fixed (via SHAKE)
angles between the side chains will result in a relaxed
polymer chain with exactly the same tacticity as it was con-
structed at the beginning. Please note, that depending on
the geometry of your repetitive unit, the initial structure of
the chain of concatenated repetitive units might be defined
approximately. If possible we recommend putting the linker
atoms (head and tail atoms) into anti-periplanar positions
(see the CBMA repetitive unit in this tutorial, figure 3).

Below is a small code sample that sets up (in pysimm)
the MD simulations using the ’no simulation’ configuration
and results in a relaxed polymer chain. First, let’s invoke the
Simulation object of the pysimm.lmpsmodule using the copy of
the initial "no simulation" polymer chain.

pmer_shake = polymer_nosim .copy ()
sim = lmps. Simulation (pmer_shake ,

name=’shake_relax ’, log=’shake .log ’)

Next, let’s add a SHAKE directive to the simulation. The
aim is to keep the angle between the side chains of each
repetitive unit fixed (figure 3). To apply shake to an angle
in LAMMPS, the user is required to know the identifiers of
bond types for the corresponding angle and the identifier of
the angle type. Presume here, that we don’t know the in-
dexes of corresponding bonds and the angle, but we know
the types of particles that form this angle, which will give us
the required indexes.

bnd1 = polymer . bond_types .get(
’CG2O2 , CG301 ’)[0]. tag

bnd2 = polymer . bond_types .get(
’CG301 , CG331 ’)[0]. tag

angl = polymer . angle_types .get(
’CG331 ,CG301 , CG2O2 ’)[0]. tag

sim. add_custom (’fix shck_fix all shake 0.001
40 0 b {} {} a {} ’. format (bnd1 , bnd2 ,
angl)

Finally, let’s run a short (30 ps) NVE MD simulation with a sin-
gle built chain to give it enough time to relax all non-fixed
bonds, angles, and dihedrals.

sim. add_md (ensemble =’nve ’, limit =0.1 ,
length =30000)

sim.run ()
pmer_shake . unwrap ()

The tacticity of the resulting chain remains almost per-
fectly syndiotactic, as it was before the relaxing MD simula-
tion (Table 2 (b) and (d)). The exception is the geometry of
the terminal repetitive unit that eventually can switch during
the MD run, giving one meso diad.

10 of 13

A LiveCoMS Tutorial

3.3.5 Note on optimal usage of pysimm
There are several free general purpose molecular manag-
ing/preparation tools available nowadays. Among them are
Moltemplate [42], Topotools [43], Avogadro [41], Ambertools
[24], and CHARMM-GUI [44, 45]. One advantage of pysimm,
as compared to some of the aforementioned programs
(specifically those interfacing with LAMMPS) is that it is a
full-scale Python API. Admittedly, it makes the construction
of atomistic models more complicated (as compared to
GUI-based applications, or applications with large pre-set
libraries). However, it does present broader algorithmic
alternatives to create new and modify existing code for
construction of advanced polymer systems.

It is also important to mention some inherited limitations
of pysimm. One is the limited support of existing force field
models. The parameter libraries of different force fields are
constantly updated and expanded, thus often they are pre-
sented in pysimm as implemented in the latest version. For
example, CGenFF which provides a vast parameter library is
typically updated by its developers for very specific models.
Another general note relates to the performance of molecu-
lar dynamic simulations. Though LAMMPS is regarded as a
very versatile and flexible package, it is typically slower than
some state-of-the-artmolecular dynamics integrators specifi-
cally targeting the simulation of biological systems. Thus, the
usage of pysimm is optimal for the preparation and equilibra-
tion of such systems, rather than for production runs.

4 Author Contributions
AGD, BLAP, MEF, and CMC conceived and wrote the online
tutorials 1 and 2. All authors conceived and wrote tutorial 3
and contributed to manuscript writing. AGD maintains the
source repository of the project at GitHub.

For a more detailed description of author contributions,
see the GitHub issue tracking and changelog at https://github.
com/AlleksD/pysimm_lcms_guide.

5 Other Contributions
The authors would like to acknowledge other pysimm
developers and testers: Ping Lin, Dylan Anstine, Grit Kupgan,
Shalini Jayaraman Rukmani, and Aravinda Munasinghe.

For a more detailed description of contributions from the
community and others, see the GitHub issue tracking and
changelog at https://github.com/AlleksD/pysimm_lcms_guide.

6 Potentially Conflicting Interests
The authors declare no potential conflict of interests.

7 Funding Information
The authors would like to acknowledge the U.S. Department
of Energy for funding (grant DE-FG02-17ER16362).

Author Information
ORCID:
Alexander G. Demidov: 0000-0002-4261-1139
B. Lakshitha A. Perera: 0000-0003-3015-3529
Michael E. Fortunato: 0000-0003-1344-5642
Sibo Lin: 0000-0001-5922-6694
Coray M. Colina: 0000-0003-2367-1352

References
[1] Frenkel D, Smit B. Understanding Molecular Simulation: FromAlgorithms to Applications. New York: Academic Press; 1996.
[2] Leach AR. Molecular Modelling: Principles and Applications.Prentice Hall; 2001.
[3] Russell AJ, Baker SL, Colina CM, Figg CA, Kaar JL, Maty-jaszewski K, Simakova A, Sumerlin BS. Next GenerationProtein-Polymer Conjugates. AIChE J. 2018; 64(9):3230–3245.https://doi.org/10.1002/aic.16338.
[4] Lin P, Colina CM. Molecular Simulation of Protein–PolymerConjugates. Curr Opin Chem Eng. 2019; 23:44–50.https://doi.org/10.1016/j.coche.2019.02.006.
[5] Perera BLA, Colina CM. Cluster Formation of Initiators as aTool to Impose Conformational Stability to Unstructured Re-gions of a Protein. Mol Phys. 2021; 119(19-20):e1963000.https://doi.org/10.1080/00268976.2021.1963000.
[6] Kubota K, Fujishige S, Ando I. Solution Properties of Poly(N-Isopropylacrylamide) in Water. Polym J. 1990; 22(1):15–20.https://doi.org/10.1295/polymj.22.15.
[7] Kubota K, Hamano K, Kuwahara N, Fujishige S, AndoI. Characterization of Poly (N-Isopropylmethacrylamide)in Water. Polym J. 1990; 22(12):1051–1057.https://doi.org/10.1295/polymj.22.1051.
[8] Tacx JCJF, Schoffeleers HM, Brands AGM, Teuwen L. Dis-solution Behavior and Solution Properties of Polyvinylalcoholas Determined by Viscometry and Light Scattering in DMSO,Ethyleneglycol and Water. Polymer. 2000; 41(3):947–957.https://doi.org/10.1016/S0032-3861(99)00220-7.
[9] Bucholz EW, Haskins JB, Monk JD, Bauschlicher Jr CW, LawsonJW. Phenolic Polymer Solvation in Water and Ethylene Gly-col, I: Molecular Dynamics Simulations. J Phys Chem B. 2017;121(13):2839–2851. https://doi.org/10.1021/acs.jpcb.7b00326.
[10] Rukmani SJ, Kupgan G, Anstine DM, Colina CM. A MolecularDynamics Study of Water-Soluble Polymers: Analysis of ForceFields From Atomistic Simulations. Mol Simul. 2019; 7022:310–321. https://doi.org/10.1080/08927022.2018.1531401.

11 of 13

https://github.com/AlleksD/pysimm_lcms_guide
https://github.com/AlleksD/pysimm_lcms_guide
https://github.com/AlleksD/pysimm_lcms_guide
https://orcid.org/0000-0002-4261-1139
https://orcid.org/0000-0003-3015-3529
https://orcid.org/0000-0003-1344-5642
https://orcid.org/0000-0001-5922-6694
https://orcid.org/0000-0003-2367-1352
https://doi.org/10.1002/aic.16338
https://doi.org/10.1016/j.coche.2019.02.006
https://doi.org/10.1080/00268976.2021.1963000
https://doi.org/10.1295/polymj.22.15
https://doi.org/10.1295/polymj.22.1051
https://doi.org/10.1016/S0032-3861(99)00220-7
https://doi.org/10.1021/acs.jpcb.7b00326
https://doi.org/10.1080/08927022.2018.1531401

A LiveCoMS Tutorial

[11] Munasinghe A, Mathavan A, Mathavan A, Lin P, Col-ina CM. Molecular Insight into the Protein–PolymerInteractions in N-Terminal PEGylated Bovine SerumAlbumin. J Phys Chem B. 2019; 123(25):5196–5205.https://doi.org/10.1021/acs.jpcb.8b12268.
[12] Ramezanghorbani F, Lin P, Colina CM. Optimizing Pro-tein–Polymer Interactions in a Poly(Ethylene Glycol) Coarse-Grained Model. J Phys Chem B. 2018; 122(33):7997–8005.https://doi.org/10.1021/acs.jpcb.8b05359.
[13] Fortunato ME, Colina CM. pysimm: A python package forsimulation of molecular systems. SoftwareX. 2017; 6:7–12.https://doi.org/10.1016/j.softx.2016.12.002.
[14] Demidov AG, Fortunato ME, Colina CM. Update0.2 to “pysimm: A python package for simulationof molecular systems”. SoftwareX. 2018; 7:70–73.https://doi.org/10.1016/j.softx.2018.02.006.
[15] Demidov AG, Perera BLA, Fortunato ME, Lin S, Colina CM.Update 1.1 to “Pysimm: A Python Package for Simula-tion of Molecular Systems”. SoftwareX. 2021; 15:100749.https://doi.org/10.1016/j.softx.2021.100749.
[16] Plimpton S. Fast Parallel Algorithms for Short-RangeMolecular Dynamics. J Comput Phys. 1995; 117(1):1–19.https://doi.org/10.1006/JCPH.1995.1039.
[17] Shah JK, Marin-Rimoldi E, Mullen RG, Keene BP, Khan S,Paluch AS, Rai N, Romanielo LL, Rosch TW, Yoo B, MaginnEJ. Cassandra: An Open Source Monte Carlo Package forMolecular Simulation. J Comput Chem. 2017; p. 1727–1739.https://doi.org/10.1002/jcc.24807.
[18] Sarkisov L, Harrison A. Computational Structure Charac-terisation Tools in Application to Ordered and DisorderedPorous Materials. Mol Simul. 2011; 37(15):1248–1257.https://doi.org/10.1080/08927022.2011.592832.
[19] Willems TF, Rycroft CH, Kazi M, Meza JC, Haranczyk M.Algorithms and Tools for High-Throughput Geometry-Based Analysis of Crystalline Porous Materials. Micro-porous and Mesoporous Mater. 2012; 149(1):134–141.https://doi.org/10.1016/j.micromeso.2011.08.020.
[20] Rukmani SJ, Lin P, Andrew JS, Colina CM. MolecularModeling of Complex Cross-Linked Networks of PEGDANanogels. J Phys Chem B. 2019; 123(18):4129–4138.https://doi.org/10.1021/acs.jpcb.9b01622.
[21] Song C, Hu F, Meng Z, Li S, Shao W, Zhang T, Liu S, Jian X.Atomistic StructureGeneration of Covalent Triazine-Based Poly-mers byMolecular Simulation. RSC Adv. 2020; 10(8):4258–4263.https://doi.org/10.1039/c9ra11035f.
[22] Anstine DM, Strachan A, Colina CM. Effects of an Atom-istic Modeling Approach on Predicted Mechanical Properties ofGlassy Polymers via Molecular Dynamics. Modell Simul MaterSci Eng. 2020; 28(2):025006. https://doi.org/10.1088/1361-651X/ab615c.
[23] Wang J, Wolf R, Caldwell J, Kollman P, Case D. Development andTesting of a General AMBER Force Field. J Comput Chem. 2004;34:1157. https://doi.org/10.1002/jcc.20035.

[24] Case DA, Betz RM, Botello-Smith W, Cerutti DS, Cheatham TE,Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N,Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P,Lin C, Luchko T, et al., AMBER 2016. San Francisco;.
[25] Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S,Zhong S, Shim J, Darian E, Guvench O, Lopes P, VorobyovI, Mackerell AD. CHARMM General Force Field (CGenFF):A force field for drug-like molecules compatible with theCHARMM all-atom additive biological force fields. Jour-nal of Computational Chemistry. 2010; 31(4):671–690.https://doi.org/10.1002/jcc.21367.CHARMM.
[26] Vanommeslaeghe K, MacKerell AD. Automation of theCHARMM General Force Field (CGenFF) I: Bond Perception andAtom Typing. Journal of Chemical Information and Modeling.2012; 52(12):3144–3154. https://doi.org/10.1021/ci300363c.
[27] Vanommeslaeghe K, Raman EP, Mackerell AD. Automationof the CHARMM General Force Field (CGenFF) II: Assignmentof Bonded Parameters and Partial Atomic Charges. Journal ofChemical Information and Modeling. 2012; 52(12):3155–3168.https://doi.org/10.1021/ci3003649.
[28] Young RJ, Lovell PA. Introduction to Polymers, Second Edition.Progress report, Taylor & Francis; 1991. https://books.google.

com/books?id=-IhIzD4NQXAC.
[29] Lesson: Object-Oriented Programming Concepts;. Ac-cessed: 2022-05-24. https://docs.oracle.com/javase/tutorial/

java/concepts/index.html.
[30] Plimpton SJ. LAMMPSOverview: Design Features Future; 2016,

https://www.osti.gov/biblio/1375563, Symposium on MolecularDynamics of Materials from Assembly to Fracture.
[31] venv — Creation of virtual environments;. Accessed: 2022-06-20. https://docs.python.org/3/library/venv.html.
[32] Conda release. Home;. Accessed: 2022-06-20. https://docs.

conda.io/projects/conda/en/latest/index.html.
[33] Kim S, Thiessen PA, Cheng T, Yu B, Bolton EE. An Up-date on PUG-REST: RESTful Interface for Programmatic Accessto PubChem. Nucleic Acids Res. 2018; 46(W1):W563–W570.https://doi.org/10.1093/nar/gky294.
[34] Gasteiger J, Marsili M. Iterative Partial Equalization of OrbitalElectronegativity—a Rapid Access to Atomic Charges. Tetra-hedron. 1980; 36:3219–3288. https://doi.org/10.1016/0040-4020(80)80168-2.
[35] units command - LAMMPS documentation;. Accessed: 2021-10-12. https://docs.lammps.org/units.html.
[36] Abbott LJ, Hart KE, Colina CM. Polymatic: A general-ized simulated polymerization algorithm for amorphous poly-mers. Theoretical Chemistry Accounts. 2013; 132(3):1–19.https://doi.org/10.1007/s00214-013-1334-z.
[37] Siepmann JI, Frenkel D. Conflgurational biasMonte Carlo: a new sampling scheme for flexi-ble chains. Molecular Physics. 1992; 75(1):59–70.https://doi.org/10.1080/00268979200100061.

12 of 13

https://doi.org/10.1021/acs.jpcb.8b12268
https://doi.org/10.1021/acs.jpcb.8b05359
https://doi.org/10.1016/j.softx.2016.12.002
https://doi.org/10.1016/j.softx.2018.02.006
https://doi.org/10.1016/j.softx.2021.100749
https://doi.org/10.1006/JCPH.1995.1039
https://doi.org/10.1002/jcc.24807
https://doi.org/10.1080/08927022.2011.592832
https://doi.org/10.1016/j.micromeso.2011.08.020
https://doi.org/10.1021/acs.jpcb.9b01622
https://doi.org/10.1039/c9ra11035f
https://doi.org/10.1088/1361-651X/ab615c
https://doi.org/10.1088/1361-651X/ab615c
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1002/jcc.21367.CHARMM
https://doi.org/10.1021/ci300363c
https://doi.org/10.1021/ci3003649
https://books.google.com/books?id=-IhIzD4NQXAC
https://books.google.com/books?id=-IhIzD4NQXAC
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://www.osti.gov/biblio/1375563
https://docs.python.org/3/library/venv.html
https://docs.conda.io/projects/conda/en/latest/index.html
https://docs.conda.io/projects/conda/en/latest/index.html
https://doi.org/10.1093/nar/gky294
https://doi.org/10.1016/0040-4020(80)80168-2
https://doi.org/10.1016/0040-4020(80)80168-2
https://docs.lammps.org/units.html
https://doi.org/10.1007/s00214-013-1334-z
https://doi.org/10.1080/00268979200100061

A LiveCoMS Tutorial

[38] Pant PK, Theodorou DN. Variable connectivity methodfor the atomistic Monte Carlo simulation of polydispersepolymer melts. Macromolecules. 1995; 28(21):7224–7234.https://doi.org/10.1021/ma00125a027.
[39] Nguyen H, Case DA, Rose AS. NGLview–interactivemolecular graphics for Jupyter notebooks.Bioinformatics. 2017; 34(7):1241–1242.https://doi.org/10.1093/bioinformatics/btx789.
[40] Humphrey W, Dalke A, Schulten K. VMD: Visual Molecular Dy-namics. J Mol Graphics. 1996; 7855(December 1995):33–38.https://doi.org/10.1016/0263-7855(96)00018-5.
[41] Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E,Hutchison GR. Avogadro: An Advanced Semantic ChemicalEditor, Visualization, and Analysis Platform. J Cheminf. 2012;4(1):1–17. https://doi.org/10.1186/1758-2946-4-17.
[42] Jewett AI, Stelter D, Lambert J, Saladi SM, Roscioni OM, RicciM, Autin L, Maritan M, Bashusqeh SM, Keyes T, Dame RT, SheaJE, Jensen GJ, Goodsell DS. Moltemplate: A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Con-densed Matter Physics. Journal of Molecular Biology. 2021;433(11):166841. https://doi.org/10.1016/j.jmb.2021.166841,computation Resources for Molecular Biology.
[43] Kohlmeyer A, TopoTools; 2017. Accessed: 2022-06-20. https:

//sites.google.com/site/akohlmey/software/topotools.
[44] Jo S, Kim T, Iyer VG, Im W. Software News and Up-dates CHARMM-GUI: A Web-Based Graphical User In-terface for CHARMM. J Comput Chem. 2008; 29.https://doi.org/10.1002/jcc.
[45] Choi YK, Park SJ, Park S, Kim S, Kern NR, Lee J, Im W. CHARMM-GUI Polymer Builder for Modeling and Simulation of SyntheticPolymers. Journal of Chemical Theory and Computation. 2021;17(4):2431–2443. https://doi.org/10.1021/acs.jctc.1c00169.

13 of 13

https://doi.org/10.1021/ma00125a027
https://doi.org/10.1093/bioinformatics/btx789
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1186/1758-2946-4-17
https://doi.org/10.1016/j.jmb.2021.166841
https://sites.google.com/site/akohlmey/software/topotools
https://sites.google.com/site/akohlmey/software/topotools
https://doi.org/10.1002/jcc
https://doi.org/10.1021/acs.jctc.1c00169

	Introduction
	Scope

	Prerequisites
	Background knowledge
	Software/system requirements
	Docker image with pysimm deployed
	Native pysimm installation
	Notes on LAMMPS installation
	Other Python packages required

	Content and links
	Tutorial I: Basic molecule managing and system building in pysimm
	Tutorial II: Automatic force field assignment and MD simulations setup
	Tutorial III: Simulated random walk polymerization with pysimm
	Preparing the repetitive unit
	Making the polymer and checking its tacticity
	Polymerization with controlled tacticity
	A setup to construct a polymer chain with exact tacticity
	Note on optimal usage of pysimm

	Author Contributions
	Other Contributions
	Potentially Conflicting Interests
	Funding Information

