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Abstract Kinases are established drug targets to combat cancer and inflammatory diseases.
Despite decades of kinase research, challenges still remain, such as the under-exploration of a
large fraction of the kinome and the promiscuous binding of many kinase inhibitors. Due to the
highly conserved orthosteric ATP binding site in kinases, ligands may bind not only to their des-
ignated kinase (on-target) but also to other kinases (off-targets). Such promiscuous binding can
causemild to severe side effects, and the prediction of these off-targets is highly non-trivial. There-
fore, we propose a pipeline that allows the study of kinase similarities from four different angles
in an automated and modular fashion. The first method considers the binding site sequence. The
second method uses structural information via KiSSim, a newly developed fingerprint that consid-
ers both physico-chemical and spatial properties of the binding site. The third method involves
kinase-ligand interaction fingerprints as provided by KLIFS, and the last method utilizes the mea-
sured activity of ligands on kinases based on ChEMBL data. Finally, results for a given set of kinases
are collected and analyzed to gain insight into potential off-targets from the different aforemen-
tioned perspectives. Since the pipeline is set up as a series of Jupyter notebooks covering both
theoretical and practical aspects, the target audience ranges from beginners to advanced users
working in the field of natural and computer sciences. The pipeline is part of the TeachOpenCADD
project and extends it with this special kinase edition. All code is free, open-source, and made
available at https://github.com/volkamerlab/teachopencadd.
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1 Introduction
Kinases are involved in most cellular processes by phos-
phorylating—and thereby activating—themselves or other
proteins. This family is among the most frequently mutated
proteins in tumors and kinases have been successfully
studied as drug targets for many decades [1]. Thanks to
the longstanding research, a plethora of kinase data is
freely available, i.e., as part of databases such as UniProt [2],
PDB [3] or ChEMBL [4], and has been made easily accessible
via kinase resources such as the KLIFS—Kinase-Ligand
Interaction Fingerprints and Structures—database [5]. As
of February 2022, 5, 911 X-ray structures of human kinases
have been resolved (see the KLIFS database [6]) and 70
FDA-approved small molecule protein kinase inhibitors
are on the market [7]. Most of the approved drugs bind
in the ATP binding pocket and intermediate surroundings
(orthosteric binding site).

Although structural data provides rich information,
kinases have been widely classified based on sequence.
Manning et al. [8] clustered the human protein kinases
based on their sequence similarity into eight major groups
(AGC, CAMK, CK1, CMGC, STE, TK, TKL, and "Other") as well as
atypical kinases. The resulting Manning kinome tree depicts
kinase clustering (see Figure 1).

Despite decades of kinase research, challenges still
remain [9]. For example:

1. A large fraction of the kinome is un-/underexplored.
Figure 1a shows the number of PDB structures per
kinase, unveiling a vast imbalance between structurally
resolved kinases and unexplored ones. For example,
CDK2 has been resolved in 426 PDB structures, while
only 313 kinases [6] out of approximately 540 in the
kinome [9] have been structurally resolved.

2. Many kinase inhibitors are promiscuous binders, caus-
ing off-target effects or enabling polypharmacology [1,
10]. For example, the Epidermal Growth Factor Recep-
tor (EGFR) inhibitor erlotinib shows affinities to other ki-
nases in the highly sequentially-similar TK kinase group,
but also strongly affects off-targets in more remote ki-
nase groups (see Figure1b).

Therefore, assessing kinase similarity from different an-
gles may be a crucial step in understanding and predicting
off-targets to help to design more selective drugs and to
avoid side effects.
1.1 Scope
In this study, similarities between a set of kinases are inves-
tigated based on methods offering different perspectives
on this challenging topic with a focus on orthosteric binding
sites (here referred to as binding sites), as summarized

in Table 1. The first method considers the binding site
sequence as deposited in the KLIFS database. The second
method uses KiSSim [11], a recently developed fingerprint
that considers physico-chemical as well as spatial properties
of the binding site. The third method involves protein-ligand
interaction fingerprints as provided in the KLIFS database,
and the last method utilizes the measured activity of ligands
against kinases based on ChEMBL data [4]. The different
methods are preceded by a general introduction to kinases
and the challenges faced in kinase-centric drug design, and
succeeded by a comparison between the different kinase
similarity methods.

Note that this study focuses on the similarities between
ATP binding sites. Therefore, kinase polypharmacology and
off-targets can only be assessed within the scope of orthos-
teric binding sites, even though the promiscuity of some lig-
ands may be explained by binding to allosteric binding sites.
Potential allosteric binding sites are summarized in the Ki-
nase Atlas [12].

This study has been assembled into a modular pipeline
that enables the research of kinase similarities in an auto-
mated fashion, allowing users to simply use it out of the box,
or adapt it to their needs.

This workflow is integrated in the context of Tea-
chOpenCADD [15, 16], a teaching platform for computer-
aided drug design (CADD) using open-source packages
and data. Specific tasks in cheminformatics and struc-
tural bioinformatic are described and solved using
Python-based Jupyter notebooks [17] as interactive plat-
form. All code has been deposited on GitHub, see
h t t p s : / / g i t h u b . c om/v o l kame r l a b / t e a c h op e n c a dd.
The project website can be found at this link, h t t p s :
//projects.volkamerlab.org/teachopencadd.

2 Prerequisites
2.1 Target audience
The notebooks were developed to support researchers inter-
ested in kinase-centric computational drug design, with a fo-
cus on understanding and predicting kinase off-targets. As
this collection is part of the TeachOpenCADD training mate-
rial [15, 16], we also recommend the notebooks to teachers
as pedagogical interactive material in structural bioinformat-
ics and cheminformatics.
2.2 Background knowledge
Thenotebooks are constructed in away that no in depth prior
knowledge besides an affinity for the natural or computer
sciences is required. Each notebook eases into the topic of
kinase drug development and kinase similarity with a lot of
theoretical background and comments on all content as well
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Topic Description Hyperlink
What is a kinase? Introduction to kinases and challenges in drug discovery. T023
Pocket sequence Pairwise similarities/identities between 85 residue long KLIFS pocket

sequences.
T024

Pocket structure Pairwise similarities between 1, 032–bit long KiSSim fingerprints,
which encode spatial and physico-chemical pocket properties.

T025
Pocket-ligand interactions Pairwise similarities between 595–bit long KLIFS kinase-ligand inter-

action fingerprints (IFP).
T026

Ligand profile Pairwise similarity based on the ratio of compounds tested active
against kinase pairs.

T027
Kinase similarity Comparison between predicted off-targets based on calculated ki-

nase similarities using aforementioned methods.
T028

Table 1. TeachOpenCADD kinase edition overview: Notebook topics, description, and index with a hyperlink to the associated notebook.

(a)Number of PDB structures per kinase. The figure shows the imbalance
between highly explored kinases, for example, the groups TK and CMGC.
The CDK2 kinase in the CMGC group has the most structures, with 426.
The red circle is proportional to the number of PDB structures for each
kinase, such that the greater is the circle, the higher is the number of
structures.

(b) Developing selective kinase inhibitors is non-trivial since kinases are
highly conserved in the ATP binding site. EGFR inhibitor erlotinib binds
not only to its intended target EGFR, but also to kinases in remote groups,
such as SLK/LOK in the STE group and GAK in the "Other" group. The blue
circle is proportional to the Kd value in nM taken from the Karaman et al.
[13] dataset.

Figure 1. Visual representation using the Manning tree of existing challenges in kinase research: un-/underexplored kinase groups (left) and the promiscuous behavior of kinases (right). The figure is taken fromhttps://projects.volkamerlab.org/teachopencadd/talktorials/T023_what_is_a_kinase.html and is generated using KinMap [14].
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as programming-related steps in great detail. Nevertheless,
users will benefit from a basic understanding of the Python
programming language and the usage of Jupyter notebooks.
If such basic introduction is needed, please refer to training
material as listed on the TeachOpenCADD website [18].
2.3 Software requirements
The notebooks are written in Python and rely on open-
source packages such as pandas [19], numpy [20], scipy [21],
matplotlib [22], seaborn [23], scikit-learn [24], rdkit [25],
biotite [26], opencadd [27], kissim [28], and requests [29].

The user only needs to install the teachopencadd conda-
forge package [30] (see installation [31]), which will install all
relevant packages and save a copy of all TeachOpenCADD
notebooks—including the kinase edition discussed in this
paper—on the user’s local machine. A read-only mode of the
notebooks is accessible via the TeachOpenCADD website at
https://projects.volkamerlab.org/teachopencadd/. Online
execution can be done via Binder [32], using the following
link https://mybinder.org/v2/gh/volkamerlab/TeachOpenCADD
/master.

3 Method
In this section, the four methods that are introduced to
measure kinase similarity are described, namely the pocket
sequence, the KiSSim fingerprint, the interaction fingerprint,
and the ligand profile. Note that the theoretical and practical
aspects of each method are also covered in great detail in
the individual notebooks of this kinase collection (Table 1).
As discussed in the "Scope" section of this manuscript, we
focus on kinase similarity based on orthosteric binding sites.
3.1 Pocket sequence
The full amino acid sequence is often used to assess similar-
ities between kinases (see the phylogenetic tree developed
byManning et al. [8]). Since binding sites are oftenmore con-
served than the whole protein, van Linden et al. [33] defined
as part of KLIFS a 85-long pocket sequence that is aligned
across the kinome. Using a sequence that focuses on the
binding site seems appropriate in the case of kinases, since
this is where the ligand is likely to bind. Moreover, work-
ing with a fixed length sequence is practical from a compu-
tational point of view.

In this study, two methods are used to compute relation-
ships based on sequence, namely the sequence identity and
the sequence similarity, which are described below.
3.1.1 Sequence identity
The pairwise sequence identity, or simply sequence identity,
is a similarity based on character-wise discrepancy, in other

terms, the number of residues that match in two aligned se-
quences [34]. More formally, given two kinase sequences S
and S’ of same lengths L, the sequence identity can be de-
fined as

sequence identity(S, S’) = 1
L

L∑
n=1

I
(
S[n], S′[n]), (1a)

where I is the identity matrix of the amino acids, and S[n]
the amino acid at position n of the kinase sequence S. Note
that not all kinases have residues present at each of the 85
alignment positions. Such gaps are represented by "-" and
count as mismatch to any amino acid.
3.1.2 Sequence similarity
Unlike sequence identity which treats all residues uniformly,
pairwise sequence similarity, or sequence similarity, takes
into account the change of the amino acids over evolution-
ary time, thus, reflecting relationships between amino acids.
It is based on a substitutionmatrixM, where each entry gives
a score between two amino acids. In this study, the BLO-
SUM substitution matrix [35], as implemented in biotite [36],
is used. Formally, the following is defined:

sequence similarity(S, S’) = 1
L

L∑
n=1

M′(S[n], S′[n]), (1b)
whereM′ is the translated and rescaled version of the sub-

stitution matrix M.
For both the sequence identity and similarity, the closer

the value is to 1, the more similar are the kinases.
Figure 2 shows the sequence similarity between the KLIFS

pocket sequence of EGFR and MET kinases. Sequence simi-
larity is used by default in the pipeline for further analysis.

Figure 2. Sequence similarity between EGFR and MET. The 85-residue pocket sequence is retrieved from KLIFS. The pairwise se-quence similarity takes into account the change of the amino acidsover evolutionary time.

3.2 The KiSSim fingerprint
In order to assess the pairwise similarity of kinases from a
structural point of view, the newly developed KiSSim (Kinase
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Structure Similarity) fingerprint [11, 28] is used. This finger-
print describes the physico-chemical and spatial properties
of structurally resolved kinases, while focusing on the KLIFS
pocket residues. Each structure is mapped to a fingerprint
composed of 1, 032 bits, the first 680 (= 85 × 8) bits describ-
ing physico-chemical features and the remaining 352 (= 85×
4 + 12) bits spatial information (see Figure 3).

Figure 3. The 1, 032-long KiSSim fingerprint encodes physico-chemical and spatial properties of the kinase’s pocket, adding a struc-tural perspective on kinases. The figure is adapted from [28].

3.2.1 From several structures to one kinase
A kinase can be represented by one or even a hundred re-
solved crystal structures in the PDB (see Figure 1a). In this
study, we aim at comparing different kinases and not individ-
ual structures. Since KiSSim generates a fingerprint for each
structure, the following mapping from structures to kinase is
applied:

Given two kinases K and K’, all available structures in
KLIFS for these kinases are fetched using opencadd [27],
namely s1, . . . , sm for kinase K, and s′1, . . . , s′n for kinase K’,
noting that the number of structures might be different
for each kinase. Each structure si, s′i is then mapped to its
corresponding KiSSim fingerprint fpi, fp′i , see Figure 4. The
fingerprints fp, fp’ corresponding to kinases K, K’ respectively,
are the ones for which the Euclidean distance is minimized
(Figure 4). Note that these minimal distance fingerprints vary
for each kinase depending on the compared K, K’ pair.

Finally, two kinases K, K’ are compared based on their re-
spective minimal distance between KiSSim fingerprint fp, fp’
using the Euclidean norm:

KiSSim dissimilarity (fp, fp’) = ∥fp – fp’∥2 . (2)
In this case, the closer the value to 0, the more similar the
kinases.
3.3 The interaction fingerprint
Interaction fingerprints (IFPs) encode the binding mode of a
ligand in a binding site, i.e., the protein-ligand interactions

Figure 4. Associating one structural fingerprint per kinase. All avail-able structures are retrieved for two given kinases and all finger-prints are computed. The fingerprints selected to be associated withthe kinase in the present kinase pair are the ones for which the com-puted distance is minimized.

that are present in a structurally resolved complex. If a lig-
and can form similar interaction patterns in proteins other
than its designated protein (off- vs. on-target), it is possible
that this ligand will cause unintended side effects. Knowl-
edge about binding mode similarities can therefore help to
avoid such off-target effects.

The KLIFS interaction fingerprint describes seven possible
interactions for each of the 85 residues in the binding pocket.
Interactions include 1. hydrophobic contacts, 2. aromatic in-
teractions, face to face, 3. aromatic interactions, edge to face,
4. H-bond donors, 5. H-bond acceptors, 6. cationic interac-
tions, and 7. anionic interactions. The 595-bit long vector de-
scribes the presence or absence of such interactions for all
85 residues (see Figure 5).

Figure 5. TheKLIFS interaction fingerprint encodes seven interactiontypes for each of the 85 residues in the binding site. Interaction typesinclude: hydrophobic contacts (HYD), face to face aromatic interac-tions (F-F), face to edge aromatic interactions (F-E), protein H-bonddonors (DON), protein H-bond acceptors (ACC), protein cationic in-teractions (ION+), and protein anionic interactions (ION-). The figureis taken from [37].
Similarly to the KiSSim comparison, given two kinases K

and K’, all available structures in KLIFS for these kinases are
fetched using opencadd [27]. Each structure is mapped to its
corresponding IFP. The interaction fingerprints fp, fp’ corre-
sponding to kinases K, K’ respectively are the ones for which
the Jaccard distance [38] is minimized (Figure 4). Note that
the Euclidean distance is used in case of the KiSSim finger-
print, which contains continuous and discrete values, while
the Jaccard distance is employed in case of the binary IFPs.
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Finally, two kinases K, K’ are compared using their respec-
tive minimal distance between interaction fingerprint fp, fp’
and calculating the Jaccard distance:

IFP dissimilarity (fp, fp’) = dJ(fp, fp’), (3)
where dJ is the Jaccard distance.In this case, the closer the value to 0, the more similar the
kinases.
3.4 Ligand profile
In the context of drug design, the following assumption is
often made: if a compound was tested active on two differ-
ent kinases, it is suspected that these two kinases may have
some degree of similarity [39]. This is the rationale behind
the ligand profile similarity. Given bioactivity data for a set of
compounds measured against a set of targets—in this case
kinases—and two kinases K, K’, ligand profile similarity is de-
fined as

lig. profile similarity(K, K’) = # actives on both K and K’# tested on both K and K’ . (4)
The closer the value is to 1, the more similar are the

kinases. If no compounds were commonly tested on two
kinases, then the similarity is set to 0. Computing the
similarity between a kinase and itself may be interpreted
as kinase promiscuity, where the similarity described above
would therefore represent the fraction of active compounds
over all tested compounds for this kinase.
3.4.1 Bioactivity data
The bioactivity data used for this method comes from Kino-
data [40], from the Openkinome organization [41]. It is a pre-
processed kinase subset of the ChEMBL data [4], version 29.
Further processing includes keeping only IC50 values given innM, and converting them to pIC50 values. If there are severalmeasurements for a kinase-compound pair, then the most
active value, i.e., the entry with the highest pIC50 value, is
kept. Finally, the pIC50 values are binarized using a 6.3 cut-
off to discriminate between an active or inactive compound
as described in [42].

In the pipeline, one can additionally compute the non-
reduced ratio of number of active compounds against the
total number of compounds to gain insight into the actual
number of measurements for each kinase pair.
3.5 Kinase comparison and clustering
To assess kinase similarities based on the calculated
(dis)similarity matrices, two visualization methods are used,
namely heatmaps and dendrograms.

3.5.1 Heatmaps
The heatmaps are generated using matplotlib [22] to depict
the similarity between a set of kinases. The maximum value
is 1, indicating exact similarity, as is the case for diagonal en-
tries. The value 0 indicates total dissimilarity. Plotting such
figures allows to see and extract patterns thanks to the gra-
dient of colors, see top row in Figure 6.
3.5.2 Dendrograms
Clustering algorithms are used to identify groups such that
the similarities within clusters are higher than compared
to other clusters [43]. In this study, hierarchical clustering
is used, and, unlike heatmaps, it is based on distance (or
dissimilarity). Hierarchical clustering can be graphically
displayed using a dendrogram (see bottom row in Figure 6),
where the height of each node is proportional to the dissimi-
larity between its two daughter clusters. The clustering and
plotting is done using scikit-learn [24] and matplotlib [22],
respectively.

For fair comparison, the distance matrices for all four
methods are normalized so that each entry lives between 0
and 1. Similarity matrices—as used for the heatmaps—are
then computed using 1–distance matrix. Contrary to the
dendrograms, that use the distance matrix.
4 Pipeline
Measuring kinase similarity is a non-trivial task; distinct
measures can provide different insights, which can be com-
plementary, confirmatory, or contradictory, and therefore
expand our knowledge on the target(s) at hand. However,
implementing multiple methods can be time-consuming
and comparing results across many output types can be
laborious. Turning such processes into a functional pipeline
helps to avoid the scattering of scripts and to speed up
iterations of the design-make-test-analyze cycle [44] of drug
design campaigns. Moreover, following the findable, accessi-
ble, interoperable, and reusable (FAIR) principles [45] makes
such pipelines long-lasting and available to the community.

In the pipeline presented herein, we implemented the dif-
ferent methods once and streamlined each method’s results
into a standardized output with a pre-defined set of visual-
ization tools for easy comparison. Moreover, the pipeline is
flexible enough so that adding new methods or new visual-
ization tools is effortless, making the whole process easy to
understand, maintain, and expand.
4.1 Means of the pipeline
The proposed pipeline is a collection of six Jupyter note-
books [17] that allows the study of kinase similarity from
four different angles in an automated and modular fashion
(Figure 7).

6 of 11 https://doi.org/10.33011/livecoms.3.1.1599
Living J. Comp. Mol. Sci. 2022, 3(1), 1599

https://doi.org/10.33011/livecoms.3.1.1599


A LiveCoMS Training Article

Figure 6. Visualization of kinase similarity from four different angles: sequence, KiSSim, interaction fingerprint (ifp) as well as ligand-profile.The top, bottom row shows four heatmaps, dendrograms respectively for a set of nine study kinases.

4.2 Structure of the notebooks
The structure of all notebooks is as follows: the first section
covers the theory written in Markdown and summarizes the
necessary concepts to understand the task. Relevant refer-
ences are also mentioned. The second part of a notebook
deals with the actual implementation of the task in a peda-
gogical manner, including motivation for practical steps and
detailed comments on coding decisions. Finally, a discussion
and a quiz section wrap up the notebook. This structure is
very well suited from a teaching perspective, since it contains
both theory and hands on programming. The notebook can
easily be used as a medium for a presentation, and it allows
for self-study as well as usage in own research projects.
4.3 About the code
The programming section is done in Python exclusively and
the code follows the latest software best practices. It is writ-
ten pythonically and contains lots of code comments. Thanks
to the continuous integration (CI), all outputs and results are
fully reproducible and the maintenance of the pipeline is fa-
cilitated.
4.4 Content of the pipeline
As mentioned previously, the proposed pipeline contains six
notebooks, described below:

The first notebook sets the stage with a kinase introduc-
tion and references/tools on where to find kinase-related

information. It is also in this first notebook that a set of
kinases of interest is defined. In this study, nine kinases
are selected, the same nine as in the paper by Schmidt
et al. [46], where the authors discussed the challenges
and advantages of tackling kinase similarity from multiple
perspectives. Table 2 summarizes the information used for
these kinases. The pipeline can be executed out of the box
with the defined set of kinases, but it can equally be run with
a different user defined set of kinases. The only condition
is that the uploaded CSV file with the kinases of interest
contains two mandatory columns, namely kinase_klifs,
which is the KLIFS name of the kinase, and uniprot_id, the
Uniprot identifier (ID) [2] of the kinase (Figure 7).

The four following notebooks describe one similarity
method at a time as discussed in Section 3: the pocket
sequence, the KiSSim fingerprint, the interaction fingerprint,
and the ligand profile.

The final notebook collects the information from the
previous ones and compares the different perspectives with
easy-to-understand visualization such as heatmaps and den-
drograms (see Section 3.5). Additionally, an equally weighted
average to combine distance and similarity matrices from
all four perspectives can be computed, yielding a single
heatmap, and a single dendrogram. The user can easily
extend this to a knowledge-informed weighting scheme
based on their own research focus.
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Figure 7. The proposed pipeline consists of six Jupyter note-books [17]. Given a set of kinases in a CSV format, four similaritymea-sures are implemented, and kinases are compared using heatmapsand dendrograms. The project is part of TeachOpenCADD [15, 16]and uses open-source tools and databases such as KLIFS [5] andChEMBL [4].

4.5 Features of the pipeline
The developed pipeline contains many useful features.
Firstly, it is part of the TeachOpenCADD project [15, 16] and
extends it with this special kinase edition. Being part of
TeachOpenCADD has the following advantages:

1. TeachOpenCADD is open-source and freely available
at https://github.com/volkamerlab/teachopencadd,
under the Attribution 4.0 International (CC BY 4.0)
license.

2. A dedicated conda package [47] facilitates installation.
3. Online execution is possible via the Binder project [32].
4. The teaching approach makes the notebooks easy to

follow.
Moreover, the pipeline is easily adaptable to new sets of ki-
nases as well as new similarity methods, defined by a user.
5 Conclusion
In this study, a full pipeline for the assessment of kinase sim-
ilarity is presented, using four methods of comparison. The
pipeline is composed of six Jupyter notebooks:

1. An introduction to kinases and their central role in drug
discovery, as well as the collection of the kinase set for
the downstream notebooks.

2. The similarity from a pocket sequence point of view.
3. The similarity based on the KiSSim fingerprint, which

encodes physico-chemical and spatial properties of the
kinase pocket.

4. The similarity based on KLIFS interaction finger-
prints between the kinase pocket residues and a
co-crystallized ligand.

5. The similarity based on ligand profiling data collected
from ChEMBL, measuring a compound’s activity on a
kinase.

6. An analysis notebook which collects the proximity ma-
trices calculated for the four methods, visualizes the
similarities with heatmaps and the clusters with den-
drograms, and finally discusses the results.

We encourage users to develop their own similarity meth-
ods and to contribute to the existing pipeline.

This paper could be of interest to
1. researchers who want to gain insights into off-target

prediction and kinase similarity, and integrate their
new comparison methods to a working workflow,

2. beginners in software development who need inspira-
tion to set up a fully functional pipeline,

3. teachers who want a starting point for lecture material,
4. students with a background in bioinformatics, chemin-

formatics, and the life sciences in general,
5. anyone who is curious.
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kinase kinase_klifs uniprot_id group full kinase name
EGFR EGFR P00533 TK Epidermal growth factor receptor
ErbB2 ErbB2 P04626 TK Erythroblastic leukemia viral oncogene homolog 2
PI3K p110a P42336 Atypical Phosphatidylinositol-3-kinase
VEGFR2 KDR P35968 TK Vascular endothelial growth factor receptor 2
BRAF BRAF P15056 TKL Rapidly accelerated fibrosarcoma isoform B
CDK2 CDK2 P24941 CMGC Cyclic-dependent kinase 2
LCK LCK P06239 TK Lymphocyte-specific protein tyrosine kinase
MET MET P08581 TK Mesenchymal-epithelial transition factor
p38a p38a Q16539 CMGC p38 mitogen activated protein kinase alpha

Table 2. Set of defined kinases. The table lists the kinases used in the pipeline, the same nine as in the study by Schmidt et al. [46]. It isnoteworthy that the pipeline is applicable to an arbitrary set of kinases, the only condition being that the input CSV file should contain twocolumns, kinase_klifs and uniprot_id, displayed in bold.

KLIFS Kinase-Ligand Interaction Fingerprints and Structures
EGFR Epidermal Growth Factor Receptor
KiSSim Kinase Structure Similarity
IFP Interaction Fingerprint
ID Identifier
CI Continuous Integration
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