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Deep Learning for Molecules and Materials

Deep learning is becoming a standard tool in chemistry and materials science. Deep learning is specifically about connect-
ing some input data (features) and output data (labels) with a neural network function. Neural networks are differentiable
and able to approximate any function. The classic example is connecting a molecule’s structure and function. A recent
example is dramatically accelerating quantum calculations to the point that you can achieve DFT level accuracy with a
neural network. What makes deep learning especially relevant is that it’s a powerful tool for approximating previously
intractable functions and its ability to generate new data.
In this book, we will view deep learning as a set of tools that allows us to create models that were previously infeasible with
classical machine learning. What sets deep learning apart from classic machine learning is feature engineering. Much
of the data-driven work in the past required decisions about what features are important and how to compute them from
molecules. These are called descriptors. Deep learning is typically trained end-to-end, meaning decisions about which
features are important are no longer relevant and we can work directly with molecular structures.
Another reason deep learning is a standard method is its mature tools. Previously, training and using models in machine
learning was tedious because it required deriving and implementing new equations for each model. Deep learning has
removed this need and model changes can be done nearly effortlessly. Deep learning is not a new paradigm of science or
a replacement for a chemist. It’s a tool that is mature and now ready for application in molecules and materials.

Target Audience

The target audience of this book is students with a programming and chemistry background that are interested in building
competency in deep learning. For example, PhD students or advanced undergraduates in chemistry or materials science
with some Python programming skills will benefit from this book. Sections A and B provide a pedagogical introduction
to the principles of machine learning, but only covering topics necessary for deep learning. For example, topics like
decision trees and SVMs are not covered because they are not critical to understanding deep learning. Section C covers
deep learning principles and details on specific architectures, like the important Graph Neural Networks and Variational
Autoencoder. Other chapters, likeDeep Learning on Sequences, give a survey-level overview of a much larger area targeted
towards chemistry and materials science. Finally Section D gives more complex examples on authentic deep learning
problems from chemistry and materials science. Each section states at the top the required background knowledge, but
Python programming ability is assumed throughout. You can find a chemistry-specific introduction to Python at the
Molecular Sciences Software Institute resources page.

Framework Choice

Deep learning is always a little tied up in the implementation details – it’s hard to grasp without seeing code. Thus,
framework choice can be a part of the learning process. This book assumes familiarity with Python and numpy and we
use exclusively Python. For the deep learning framework, we use Jax, Tensorflow, Keras, and scikit-learn
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for different purposes. Jax is easy to learn because it’s essentially numpy with automatic differentiation and GPU/TPU-
acceleration. In this book, we use Jax when it’s important to understand the implementation details and connect the
equations to the code. Keras is a high-level framework that has many common deep learning features implemented.
It is used when we would like to work with more complex models and I’m trying to show a more complete model. Of
course, you can use Jax for complete models and show detailed implementations in Keras. This is just my reasoning
for the choice of framework. scikit-learn is an ML package and thus we’ll see in the early chapters on ML. Finally,
Tensorflow is the underlying library of Keras so if we want to implement new layers in Keras we do it through
Tensorflow. TensorflowProbability is an extension to Tensorflow that supports random variables and
probability distributions used in our generative models. The most important framework left out of this book is PyTorch,
which has recently taken the lead to be the most popular framework in deep learning research (not necessarily industry).
Ultimately, this book presents the equations and implementation details so that youwill learn concepts that are independent
of the framework. You should thus be able to quickly pick up PyTorch, MXNet, or whatever the next new framework
might be.
One of the most common mistakes I see from students is that they try to learn deep learning via web searching questions
and reading documentation. This is a terrible way to learn deep learning. There is quite a bit of information out there,
but you will end up with a distorted and framework-specific understanding of deep learning. Remember, a high-ranking
search result may be relevant and popular, but that doesn’t mean it will help you learn. More importantly, learning deep
learning through blogs and Stack overflow makes it so hard to grasp the mathematics and intuition. Web searching and
hacking together code is definitely a part of deep learning (for better or worse), but you should do this once you have a
firm grasp of the math and details of the model you want to implement.

Interactivity

On each chapter, you’ll see the button on the top. This launches the chapter as an interactive Google Colab. Each
chapter also includes notes on the packages that may need to be installed. If you have problems with install, the complete
current list of packages for the textbook is available here.
When using interactivity, many of the chapter will benefit from using a graphics processing unit (GPU). GPUs are what
makes deep learning fast enough to be practical on large dataset. This is possible in Google Colab, but may require
additional steps if running this locally. Check the documentation of the package you’re using (e.g., Jax, PyTorch,
Tensorflow) to find out how to use a GPU locally. I have carefully constructed the examples to be small enough
though to run on a normal CPU in a laptop though, so the GPU is optional.
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CHAPTER

ONE

TENSORS AND SHAPES

This textbook will draw upon linear algebra, vector calculus, and probability theory. Each chapter states the expected
background in an Audience & Objectives admonition (see example below). This math review fills in details
missing from those typical classes: working with tensors. If you would like a chemistry-focused background on those
topics, you can read the online book Mathematical Methods for Molecule Sciences by John Straub[Str20].
Tensors are the generalization of vectors (rank 1) and matrices (rank 2) to arbitrary rank. Rank can be defined as the
number of indices required to get individual elements of a tensor. Amatrix requires two indices (row, column), and is thus
a rank 2 tensor. We may say in normal conversation that a matrix is a “two-dimensional object” because it has rows and
columns, but this is ambiguous because the row could be 6 dimensions and the columns could be 1 dimension. Always use
the word rank to distinguish vectors, matrices, and higher-order tensors. The components that make up rank are called
axes (plural of axis). The dimension is how many elements are in a particular axis. The shape of a tensor combines all
of these. A shape is a tuple (ordered list of numbers) whose length is the rank and elements are the dimension of each
axis.

Audience & Objectives
You should have a background in linear algebra and basic Python programming to read this chapter. After reading, you
should be able to

• Define a tensor and specify one in Python
• Modify tensor rank, shape, and axes
• Use Einstein notation to define equations/expressions of tensors
• Understand and use broadcasting rules to work with tensors

Rank

Tensor rank and matrix rank are two different concepts. Matrix rank is the number of linearly independent columns
and has nothing to do with tensor rank. Some authors may use order to refer to tensor rank to distinguish the two
terms.

Let’s practice our new vocabulary. A Euclidean vector (𝑥, 𝑦, 𝑧) is a rank 1 tensor whose 0th axis is dimension 3. Its shape
is (3). Beautiful. A 5 row, 4 column matrix is now called a rank 2 tensor whose axes are dimension 5 and 4. Its shape is
(5, 4). The scalar (real number) 3.2 is a rank 0 tensor whose shape is ().
TensorFlow has a nice visual guide to tensors.

Note: Array and tensor are synonyms. Array is the preferred word in numpy and often used when describing tensors in
Python. Tensor is the mathematic equivalent.

9
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1.1 Einstein Notation

Einstein notation is the way tensor operations can be written out. We’ll be using a simplified version, based on theeinsum
function available in many numerical libraries (np.einsum, tf.einsum, jnp.einsum). It’s relatively simple. Each
tensor is written as a lower case variable with explicit indices, like 𝑎𝑖𝑗𝑘 for a rank 3 tensor. The reason the variable name
is written in lower case is because if you fill in the indices 𝑎023, you get a scalar. A variable without an index, 𝑏, is a
scalar. There is one rule for this notation: if an index doesn’t appear on both sides of the equation, it is summed over on
the one side in which it appears. Einstein notation requires both sides of the equation to be written-out, so that its clear
what the input/output shapes of the operation are.

Warning: The concept of Tensors from physics involves a more complex picture of connecting algebraic sets of
objects, typically vectors in a space. Here we just treat tensors as a synonym for multidimensional array. Be aware
that looking-up tensor on wikipedia will bring you to the physics picture.

Here are some examples of writing tensor operations in Einstein notation.
Total Sum
Sum all elements of a rank 4 tensor. In Einstein notation this is:

𝑎𝑖𝑗𝑘𝑙 = 𝑏 (1.1)

in normal mathematic notation, this would be

∑
𝑖

∑
𝑗

∑
𝑘

∑
𝑙

𝑎𝑖𝑗𝑘𝑙 = 𝑏 (1.2)

There even is a framework-independent Einstein notation library that enables you to use this notation across multiple
frameworks for neural network layers. It is called einops

Sum Specific Axis
Sum over last axis

𝑎𝑖𝑗𝑘𝑙 = 𝑏𝑖𝑗𝑘 (1.3)
In normal notation:

∑
𝑙

𝑎𝑖𝑗𝑘𝑙 = 𝑏𝑖𝑗𝑘 (1.4)

Dot Product
In Einstein notation:

𝑎𝑖𝑏𝑖 = 𝑐 (1.5)
In normal notation:

∑
𝑖

𝑎𝑖𝑏𝑖 = 𝑐 (1.6)

Notice that 𝑎𝑖 and 𝑏𝑖 must have the same dimension in their 0th axis in order for the sum in the dot product to be valid.
This makes sense, since to compute a dot product the vectors must be the same dimension. In general, if two tensors
share the same index (𝑏𝑖𝑗, 𝑎𝑖𝑘), then that axis must be the same dimension.
Can you write the following out in Einstein notation?
Matrix Multiplication
The matrix product of 2 tensors, where each tensor is rank 2.
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Answer
𝑎𝑖𝑗𝑏𝑗𝑘 = 𝑐𝑖𝑘 (1.7)

Matrix Vector Product
Apply matrix 𝑎 to column vector 𝑏 by multiplication. A ⃗𝑏 in linear algebra notation.

Answer
𝑎𝑖𝑗𝑏𝑗 = 𝑐𝑖 (1.8)

Matrix Transpose
Swap the values in a matrix to make it a transpose.

Answer
𝑎𝑖𝑗 = 𝑡𝑗𝑖 (1.9)

1.2 Tensor Operations

Why Tensors?

Tensors are the main building block of modern deep learning. Nearly all variables in equations are actually tensors.
Being able to understand how shape affects them is the key to understanding how algorithms work.

Although you can specify operations in Einstein notation, it is typically not expressive enough. How would you write
this operation: sum the last axis of a tensor? Without knowing the rank, you do not know how many indices you should
indicate in the expression. Maybe like this?

𝑎𝑖0,𝑖1,…𝑖𝑁
= 𝑎𝑖0,𝑖1,…𝑖𝑁−1

(1.10)

Well, that’s good but what if your operation has two arguments: which axis to sum and the tensor. That would also
be clumsy to write. Einstein notation is useful and we’ll see it more, but we need to think about tensor operations as
analogies to functions. Tensor operations take in 1 or more tensors and output 1 or more tensors and the output shape
depends on the input shape.
One of the difficult things about tensors is understanding how shape is treated in equations. For example, consider this
equation:

𝑔 = exp (𝑎 − 𝑏)2 (1.11)
Seems like a reasonable enough equation. But what if 𝑎 is rank 3 and 𝑏 is rank 1? Is 𝑔 rank 1 or 3 then? Actually, this is
taken from a real example where 𝑔 was rank 4. You subtract each element of 𝑏 from each element of 𝑎. You could write
this in Einstein notation:

𝑔𝑖𝑗𝑘𝑙 = exp (𝑎𝑖𝑗𝑘 − 𝑏𝑙)
2 (1.12)

except this function should work on arbitrary ranked 𝑎 and always output 𝑔 being the rank of 𝑎 + 1. Typically, the best
way to express this is explicitly stating how rank and shape are treated.

1.2. Tensor Operations 11
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1.2.1 Reduction Operations

Reduction operations reduce the rank of an input tensor. np.sum(a, axis=0) is an example. The axis argument
means that we’re summing over the 0th axis so that it will} be removed. If a is a rank 1 vector, this would leave us with
a scalar. If a is a matrix, this would remove the rows so that only columns are left over. That means we would be left
with column sums. You can also specify a tuple of axes to be removed, which will be done in that order np.sum(a,
axis=(0,1) ).
In addition to np.sum, there are np.minimum, np.maximum, np.any (logical or), and more. Let’s see some
examples

import numpy as np

a_shape = (4, 3, 2)
a_len = 4 * 3 * 2

a = np.arange(a_len).reshape(a_shape)
print(a.shape)
print(a)

(4, 3, 2)
[[[ 0 1]
[ 2 3]
[ 4 5]]

[[ 6 7]
[ 8 9]
[10 11]]

[[12 13]
[14 15]
[16 17]]

[[18 19]
[20 21]
[22 23]]]

Try to guess the shape of the output tensors using a in the below code based on what you’ve learned.

b = np.sum(a, axis=0)
print(b.shape)
print(b)

c = np.any(a > 4, axis=1)
print(c.shape)
print(c)

d = np.product(a, axis=(2, 1))
print(d.shape)
print(d)
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1.2.2 Element Operations

Default operations in Python, like + - * / ^ , are also tensor operations. They preserve shape so that the output shape
is the same as the inputs’. The input tensors must have the same shape or be able to become the same shape through
broadcasting, which is defined in the next section.

a.shape

(4, 3, 2)

b = np.ones((4, 3, 2))
b.shape

(4, 3, 2)

c = a * b
c.shape

(4, 3, 2)

1.3 Broadcasting

One of the difficulties with the elementary operations is that they require the input tensors to have the same shape. For
example, you cannot multiply a scalar (rank 0) and a vector (rank 1). Of course, if you’re familiar with numpy this
is common. It is done with broadcasting comes in. Broadcasting increases the rank of one of the input tensors to be
compatible with another. Broadcasting works at the last axis and works its way forward. Let’s see an example

Broadcasting order

Broadcasting starts at the last axis and goes forward because getting an element at the last axis gives a scalar (rank 0)
no matter what rank. This makes it possible to copy to fill up axis to align shapes.

𝐴 + 𝐵 (1.13)
Input A
Rank 2, shape is (2, 3)

A:
4 3 2

-1 2 4

Input B
Rank 1, shape is (3), a vector:

B: 3 0 1

Now let’s see how the broadcasting works. Broadcasting starts by lining up the shapes from the end of the tensors
Step 1: align on last axis

1.3. Broadcasting 13
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tensor shape
A: 2 3
B: 3
broadcasted B: . .

Step 2: process last axis
Now broadcasting looks at the last axis (axis 1) and if one tensor has axis dimension 1, its value is copied to match the
others. In our case, they agree.

tensor shape
A: 2 3
B: 3
broadcasted B: . 3

Step 3: process next axis
Now we examine the next axis, axis 0. B has no axis there, because its rank is too low. Broadcasting will insert a new
axis by (i) inserting a new axis with dimension 1 and (ii) copying the value at this new axis until its dimension matches.
Step 3i:
Add new axis of dimension 1. This is like making 𝐵 have 1 row and 3 columns:

B:
3 0 1

Step 3ii:
Now we copy the values of this axis until its dimension matches 𝐴’s axis 0 dimension. We’re basically copying 𝑏0𝑗 to 𝑏1𝑗.

B:
3 0 1
3 0 1

Final

tensor shape
A: 2 3
B: 3
broadcasted B: 2 3

Now, we compute the result by addition elementwise.

A + B
4 + 3 3 + 0 2 + 1 = 7 3 3

-1 + 3 2 + 0 4 + 1 2 2 5

Let’s see some more examples, but only looking at the input/output shape

A Shape B Shape Output Shape
(4,2) (4,1) (4,2)
(4,2) (2,) (4,2)
(16,1,3) (4,3) (16,4,3)
(16,3,3) (4,1) Error
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Try some for yourself!

A Shape B Shape Output Shape
(7,4,3) (1,) ?
(16, 16, 3) (3,) ?
(2,4,5) (5,4,1) ?
(1,4) (16,) ?

Answer

A Shape B Shape Output Shape
(7,4,3) (1,) (7,4,3)
(16, 16, 3) (3,) (16,16,3)
(2,4,5) (5,4,1) Error
(1,4) (16,) Error

1.3.1 Suggested Reading for Broadcasting

You can read more about broadcastnig in the numpy tutorial or the Python Data Science Handbook.

1.4 Modifying Rank

newaxis

newaxis slices like a[np.newaxis] are possible in tensorflow, jax, and numpy. In PyTorch there is un-
squeeze. You can also use reshape and ignore newaxis

The last example we saw brings up an interesting questions: what if we want to add a (1,4) and (16,) to end up with a (4,16)
tensor? We could insert a new axis at the end of 𝐵 to make its shape (16, 1). This can be done using the np.newaxis
syntax:

a = np.ones((1, 4))
b = np.ones(

16,
)
result = a + b[:, np.newaxis]
result.shape

(16, 4)

Just as newaxis can increase rank, we can decrease rank. One way is to just slice, like a[0]. A more general way is to
np.squeezewhich removes any axes that are dimension 1 without needing to know the specific axes that are dimension
1.
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a = np.ones((1, 32, 4, 1))
print("before squeeze:", a.shape)
a = np.squeeze(a)
print("after squeeze:", a.shape)

before squeeze: (1, 32, 4, 1)
after squeeze: (32, 4)

It turns out that np.newaxis and tf.newaxis are actually defined as None. Some programmers will exploit this
to save some keystrokes and use None instead:

a = np.ones((1, 4))
b = np.ones(

16,
)
result = a + b[:, None]
result.shape

(16, 4)

I recommend against this because it can be a bit confusing and it’s really not saving that many keystrokes.

1.4.1 Reshaping

The most general way of changing rank and shape is through np.reshape. This allows you to reshape a tensor, as long
as the number of elements remains the same. You could make a (4, 2) into an (8,). You could make a (4, 3) into a (1, 4,
3, 1). Thus it can accomplish the two tasks done by np.squeeze and np.newaxis.
There is one special syntax element to shaping: A -1 dimension. -1 can appear once in a reshape command and means
to have the computer figure out what goes there. We know the number of elements doesn’t change in a reshape, so the
computer can infer what goes in the dimension marked as -1. Let’s see some examples.

a = np.arange(32)
new_a = np.reshape(a, (4, 8))
new_a.shape

(4, 8)

new_a = np.reshape(a, (4, -1))
new_a.shape

(4, 8)

new_a = np.reshape(a, (1, 2, 2, -1))
new_a.shape

(1, 2, 2, 8)
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1.4.2 Rank Slicing

Hopefully you’re familiar with slicing in numpy/Python. Review at the Python Tutorial and the numpy tutorial for a
refresher if you need it. Rank Slicing is just my terminology for slicing without knowing the rank of a tensor. Use the
... (ellipsis) keyword. This allows you to account for unknown rank when slicing. Examples:

• Access last axis: a[...,:]
• Access last 2 axes: a[...,:,:]
• Add new axis to end a[...,np.newaxis]
• Add new axis to beginning a[np.newaxis,...]

Let’s see if we can put together our skills to implement the equation example from above,

𝑔 = exp (𝑎 − 𝑏)2 (1.14)

for arbitrary rank 𝑎. Recall 𝑏 is a rank 1 tensor and we want 𝑔 to be the rank of 𝑎 + 1.

def eq(a, b):
return np.exp((a[..., np.newaxis] - b) ** 2)

b = np.ones(4)
a1 = np.ones((4, 3))
a2 = np.ones((4, 3, 2, 1))

g1 = eq(a1, b)
print("input a1:", a1.shape, "output:", g1.shape)

g2 = eq(a2, b)
print("input a2:", a2.shape, "output:", g2.shape)

input a1: (4, 3) output: (4, 3, 4)
input a2: (4, 3, 2, 1) output: (4, 3, 2, 1, 4)

1.5 View vs Copy

In most machine learning frameworks, it is actually not possible to modify an array because element assignment inter-
feres with automatic differentiation. So this distinction of a view vs a copy is irrelevant.

Most slicing and reshaping operations produce a view of the original array. That means no copy operation is done. This
is default behavior in all frameworks to reduce required memory – you can slice as much as you want without increasing
memory use. This typically has no consequences for how we program; it is more of an optimization detail. However, if
you modify elements in a view, you will also modify the original array from which the view was constructed. Sometimes
this can be unexpected. You should not rely on this behavior though, because in numpy a copymay be returned for certain
np.reshape and slicing commands. Thus, I recommend being aware that views may be returned as an optimization,
but not assume that is always the case. If you actually want a copy you should explicitly create a copy, like with np.copy.
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1.6 Chapter Summary

• Tensors are the building blocks of machine learning. A tensor has a rank and shape that specifies how many
elements it has and how they are arranged. An axis describes each element in the shape.

• A euclidean vector is a rank 1 tensor with shape (3). It has 1 axis of dimension 3. A matrix is a rank 2 tensor. It
has two axes.

• Equations that describe operating on 1 or more tensors can be written using Einstein notation. Einstein notation
uses indices to indicate the shape of tensors, how things are summed, and which axes must match up.

• There are operations that reduce ranks of tensors, like sum or mean.
• Broadcasting is an automatic tool in programming languages that modifies shapes of tensors with different shapes
to be compatible with operations like addition or division.

• Tensors can be reshaped or have rank modified by newaxis, reshape, and squeeze. These are not standard-
ized among the various numeric libraries in Python.

1.7 Exercises

1.7.1 Einstein notation

Write out the following in Einstein notation:
1. Product of two matrices
2. Trace of a matrix
3. Outer product of two Euclidean vectors
4. A is a rank 3 tensor whose last axis is dimension 3 and contains Euclidean vectors. B is Euclidean vector. Compute

the dot product of each of the vectors in A with B. So if A is shape (11, 7, 3), it contains 11 × 7 vectors and the
output should be shape (11,7). B is shape (3)

1.7.2 Reductions

Answer the following with Python code with reductions. Write your code to be as general as possible – being able to take
arbitrary rank tensors unless it is specified that something is a vector.

1. Normalize a vector so that the sum of its elements is 1. Note the rank of the vector should be unchanged.
2. Normalize the last axis of a tensor
3. Compute the mean squared error between two tensors
4. Compute the mean squared error between the last axis of tensor A and vector ⃗𝑏
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1.7.3 Broadcasting and Shapes

1. Consider two vectors ⃗𝑎 and ⃗𝑏. Using reshaping and broadcasting alone, write python code to compute their outer
product.

2. Why is the code a.reshape((-1, 3, -1)) invalid?
3. You have a tensor of unknown rank A and would like to subtract both 3.5 and 2.5 from every element, giving two

outputs for every input. Your output will be a new tensor B with rank rank(A) + 1. The last axis of B should be
dimension 2. Here is the example:

a = np.array([10])
f(a)
# prints [[6.5, 7.5]]

b = np.array([[5, 3, 0], [0, 2, 6]])
f(b)
# [[[ 1.5 2.5]
# [-0.5 0.5]
# [-3.5 -2.5]]

# [[-3.5 -2.5]
# [-1.5 -0.5]
# [ 2.5 3.5]]]

1.8 Cited References
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CHAPTER

TWO

INTRODUCTION TO MACHINE LEARNING

There are probably a thousand articles called introduction to machine learning. Rather than rewrite this, I will instead
introduce the main ideas focused on a chemistry example. Here are some introductory sources, and please do recommend
new ones to me:

1. The book I first read in grad school about machine learning by Ethem Alpaydin[Alp20]
2. Nils Nillson’s online book Introductory Machine Learning
3. Two reviews of machine learning in materials[FZJS21, Bal19]
4. A review of machine learning in computational chemistry[GomezBAG20]
5. A review of machine learning in metals[NDJ+18]

I hope you learn from these sources about how machine learning is a method of modeling data, typically with predictive
functions. Machine learning includes many techniques, but here we will focus on only those necessary to transition into
deep learning. For example, random forests, support vector machines, and nearest neighbor are widely-used machine
learning techniques that are effective but not covered here.

Audience & Objectives
This chapter is intended for novices of machine learning with familiarity of chemistry and python. It is recommended
that you look over one of the above recommended introductory articles. This specific article assumes a very small amount
of knowledge of the pandas library (loading and selecting a column), awareness of rdkit (how we draw molecules),
and that we store/retrieve molecules as SMILES [Wei88]. After reading this, you should be able to:

• Define features, labels
• Distinguish between supervised and unsupervised learning
• Understand what a loss function is and how it can be minimized with gradient descent
• Understand what model is and its connection to features and labels
• Be able to cluster data and describe what it tells us about data
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2.1 The Ingredients

Machine learning is about constructing models by fitting them to data. Firstly, definitions:
Features
set of 𝑁 vectors { ⃗𝑥𝑖} of dimension 𝐷. Can be reals, integers, etc.

Labels
set of 𝑁 integers or reals {𝑦𝑖}. 𝑦𝑖 is usually a scalar

Labeled Data
set of 𝑁 tuples {( ⃗𝑥𝑖, 𝑦𝑖)}

Unlabeled Data
set of 𝑁 features { ⃗𝑥𝑖} that may have unknown 𝑦 labels

Model
A function 𝑓( ⃗𝑥) that takes a given feature vector in and returns a predicted ̂𝑦

Predictions
̂𝑦, our predicted output for a given input ⃗𝑥.

2.2 Supervised Learning

Our first task will be supervised learning. Supervised learning means predicting 𝑦 from ⃗𝑥 with a model trained on
data. It is supervised because we tell the algorithm what the labels are in our dataset. Another method we’ll explore is
unsupervised learning where we do not tell the algorithm the labels. We’ll see this supervised/unsupervised distinction
can be more subtle later on, but this is a great definition for now.
To see an example, we will use a dataset called AqSolDB[SKE19] that is about 10,000 unique compounds with measured
solubility in water (label). The dataset also includes molecular properties (features) that we can use for machine learning.
The solubility measurement is solubility of the compound in water in units of log molarity.

2.3 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages.

Tip: To install packages, execute this code in a new cell.

!pip install dmol-book

If you find install problems, you can get the latest working versions of packages used in this book here
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2.3.1 Load Data

Download the data and load it into a Pandas data frame. The hidden cells below sets-up our imports and/or install necessary
packages.

# soldata = pd.read_csv('https://dataverse.harvard.edu/api/access/datafile/3407241?
↪format=original&gbrecs=true')

# had to rehost because dataverse isn't reliable
soldata = pd.read_csv(

"https://github.com/whitead/dmol-book/raw/master/data/curated-solubility-dataset.
↪csv"

)
soldata.head()

ID Name \
0 A-3 N,N,N-trimethyloctadecan-1-aminium bromide
1 A-4 Benzo[cd]indol-2(1H)-one
2 A-5 4-chlorobenzaldehyde
3 A-8 zinc bis[2-hydroxy-3,5-bis(1-phenylethyl)benzo...
4 A-9 4-({4-[bis(oxiran-2-ylmethyl)amino]phenyl}meth...

InChI \
0 InChI=1S/C21H46N.BrH/c1-5-6-7-8-9-10-11-12-13-...
1 InChI=1S/C11H7NO/c13-11-8-5-1-3-7-4-2-6-9(12-1...
2 InChI=1S/C7H5ClO/c8-7-3-1-6(5-9)2-4-7/h1-5H
3 InChI=1S/2C23H22O3.Zn/c2*1-15(17-9-5-3-6-10-17...
4 InChI=1S/C25H30N2O4/c1-5-20(26(10-22-14-28-22)...

InChIKey \
0 SZEMGTQCPRNXEG-UHFFFAOYSA-M
1 GPYLCFQEKPUWLD-UHFFFAOYSA-N
2 AVPYQKSLYISFPO-UHFFFAOYSA-N
3 XTUPUYCJWKHGSW-UHFFFAOYSA-L
4 FAUAZXVRLVIARB-UHFFFAOYSA-N

SMILES Solubility SD \
0 [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C -3.616127 0.0
1 O=C1Nc2cccc3cccc1c23 -3.254767 0.0
2 Clc1ccc(C=O)cc1 -2.177078 0.0
3 [Zn++].CC(c1ccccc1)c2cc(C(C)c3ccccc3)c(O)c(c2)... -3.924409 0.0
4 C1OC1CN(CC2CO2)c3ccc(Cc4ccc(cc4)N(CC5CO5)CC6CO... -4.662065 0.0

Ocurrences Group MolWt ... NumRotatableBonds NumValenceElectrons \
0 1 G1 392.510 ... 17.0 142.0
1 1 G1 169.183 ... 0.0 62.0
2 1 G1 140.569 ... 1.0 46.0
3 1 G1 756.226 ... 10.0 264.0
4 1 G1 422.525 ... 12.0 164.0

NumAromaticRings NumSaturatedRings NumAliphaticRings RingCount TPSA \
0 0.0 0.0 0.0 0.0 0.00
1 2.0 0.0 1.0 3.0 29.10
2 1.0 0.0 0.0 1.0 17.07
3 6.0 0.0 0.0 6.0 120.72
4 2.0 4.0 4.0 6.0 56.60

LabuteASA BalabanJ BertzCT

(continues on next page)
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(continued from previous page)

0 158.520601 0.000000e+00 210.377334
1 75.183563 2.582996e+00 511.229248
2 58.261134 3.009782e+00 202.661065
3 323.755434 2.322963e-07 1964.648666
4 183.183268 1.084427e+00 769.899934

[5 rows x 26 columns]

2.3.2 Data Exploration

EDA

If doing EDA as a way to choose features, you should do the train/test/(valid) split prior to EDA to avoid contaminating
model selection with test data.

We can see that there are a number of features like molecular weight, rotatable bonds, valence electrons, etc. And of
course, there is the label solubility. One of the first things we should always do is get familiar with our data in a process
that is sometimes called exploratory data analysis (EDA). Let’s start by examining a few specific examples to get a sense
of the range of labels/data.

# plot one molecule
mol = rdkit.Chem.MolFromInchi(soldata.InChI[0])
mol

This is first molecule in the dataset rendered using rdkit.
Let’s now look at the extreme values to get a sense of the range of solubility data and the molecules that make it. First,
we’ll histogram (using seaborn.distplot) the solubility which tells us about the shape of its probability distribution
and the extreme values.

sns.distplot(soldata.Solubility)
plt.show()
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Above we can see the histogram of the solubility with kernel density estimate overlaid. The histogram shows that the
solubility varies from about -13 to 2.5 and is not normally distributed.

# get 3 lowest and 3 highest solubilities
soldata_sorted = soldata.sort_values("Solubility")
extremes = pd.concat([soldata_sorted[:3], soldata_sorted[-3:]])

# We need to have a list of strings for legends
legend_text = [

f"{x.ID}: solubility = {x.Solubility:.2f}" for x in extremes.itertuples()
]

# now plot them on a grid
extreme_mols = [rdkit.Chem.MolFromInchi(inchi) for inchi in extremes.InChI]
rdkit.Chem.Draw.MolsToGridImage(

extreme_mols, molsPerRow=3, subImgSize=(250, 250), legends=legend_text
)

<IPython.core.display.SVG object>

The figure of extreme molecules shows highly-chlorinated compounds have the lowest solubility and ionic compounds
have higher solubility. Is A-2918 an outlier, a mistake? Also, is NH3 really comparable to these organic compounds?
These are the kind of questions that you should consider before doing any modeling.

Outliers

Outliers are extreme values that fall outside of your normal data distribution. They can be mistakes or be from a
different distribution (e.g., metals instead of organic molecules). Outliers can have a strong effect on model training.
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2.3.3 Feature Correlation

Now let’s examine the features and see how correlated they are with solubility. Note that there are a few columns unrelated
to features or solubility: SD (standard deviation), Ocurrences (how often the molecule occurred in the constituent
databases), and Group (where the data came from).

features_start_at = list(soldata.columns).index("MolWt")
feature_names = soldata.columns[features_start_at:]

fig, axs = plt.subplots(nrows=5, ncols=4, sharey=True, figsize=(12, 8), dpi=300)
axs = axs.flatten() # so we don't have to slice by row and column
for i, n in enumerate(feature_names):

ax = axs[i]
ax.scatter(

soldata[n], soldata.Solubility, s=6, alpha=0.4, color=f"C{i}"
) # add some color
if i % 4 == 0:

ax.set_ylabel("Solubility")
ax.set_xlabel(n)

# hide empty subplots
for i in range(len(feature_names), len(axs)):

fig.delaxes(axs[i])
plt.tight_layout()
plt.show()

It’s interesting that molecular weight or hydrogen bond numbers seem to have little correlation, at least from this plot.
MolLogP, which is a calculated descriptor related to solubility, does correlate well. You can also see that some of these
features have low variance, meaning the value of the feature changes little or not at all for many data points (e.g., “NumH-
Donors”).
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2.3.4 Linear Model

Let’s begin with one of the simplest approaches — a linear model. This is our first type of supervised learning and is
rarely used due to something we’ll see — the difficult choice of features.

Autodiff

Autodiff is a computer program tool that can compute analytical gradients with respect to two variables in a program.

Our model will be defined by this equation:
𝑦 = �⃗� ⋅ ⃗𝑥 + 𝑏 (2.1)

which is defined for a single data point. The shape of a single feature vector, ⃗𝑥, is 17 in our case (for the 17 features). �⃗�
is a vector of adjustable parameters of length 17 and 𝑏 is an adjustable scalar (called bias).
We’ll implement this model using a library called jax that is very similar to numpy except it can compute analytical
gradients easily via autodiff.

def linear_model(x, w, b):
return jnp.dot(x, w) + b

# test it out
x = np.array([1, 0, 2.5])
w = np.array([0.2, -0.5, 0.4])
b = 4.3

linear_model(x, w, b)

WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0␣
↪and rerun for more info.)

DeviceArray(5.5, dtype=float32)

Loss

A loss is a function which takes in a model prediction ̂𝑦, labels 𝑦, and computes a scalar representing how poor the fit
is. Our goal is to minimize loss.

Now comes the critical question: How do we find the adjustable parameters �⃗� and 𝑏? The classic solution for linear
regression is computing the adjustable parameters directly with a pseudo-inverse, �⃗� = (𝑋𝑇 𝑋)−1𝑋𝑇 ⃗𝑦. You can read
more about this here. We’ll use an iterative approach that mirrors what we’ll do in deep learning. This is not the correct
approach for linear regression, but it’ll be useful for us to get used to the iterative approach since we’ll see it so often in
deep learning.
To iteratively find our adjustable parameters, we will pick a loss function and minimize with gradients. Let’s define these
quantities and compute our loss with some initial random w and b.

# convert data into features, labels
features = soldata.loc[:, feature_names].values
labels = soldata.Solubility.values

(continues on next page)
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(continued from previous page)

feature_dim = features.shape[1]

# initialize our paramaters
w = np.random.normal(size=feature_dim)
b = 0.0

# define loss
def loss(y, labels):

return jnp.mean((y - labels) ** 2)

# test it out
y = linear_model(features, w, b)
loss(y, labels)

DeviceArray(3265882.2, dtype=float32)

Wow! Our loss is terrible, especially considering that solubilities are between -13 and 2. But, that’s right since we just
guessed our initial parameters.

2.3.5 Gradient Descent

We will now try to reduce loss by using information about how it changes with respect to the adjustable parameters. If
we write our loss as:

𝐿 = 1
𝑁

𝑁
∑

𝑖
[𝑦𝑖 − 𝑓( ⃗𝑥𝑖, �⃗�, 𝑏)]2 (2.2)

This loss is called mean squared error, often abbreviated MSE. We can compute our loss gradients with respect to the
adjustable parameters:

jax.grad

jax.grad computes an analytical derivative of a Python function. It takes two arguments: the function and which args
to take the derivative of. For example, consider f(x, y, z), then jax.grad(f,(1,2)) gives 𝜕𝑓

𝜕𝑥 , 𝜕𝑓
𝜕𝑦 . Note

too that 𝑥 may be a tensor.

𝜕𝐿
𝜕𝑤𝑖

, 𝜕𝐿
𝜕𝑏 (2.3)

where 𝑤𝑖 is the 𝑖th element of the weight vector �⃗�. We can reduce the loss by taking a step in the direction of its negative
gradient:

(𝑤𝑖, 𝑏′) = (𝑤𝑖 − 𝜂 𝜕𝐿
𝜕𝑤𝑖

, 𝑏 − 𝜂 𝜕𝐿
𝜕𝑏 ) (2.4)

where 𝜂 is learning rate, which an adjustable but not trained parameter (an example of a hyperparameter) which we
just guess to be 1 × 10−6 in this example. Typically, it’s chosen to be some power of 10 that is at most 0.1. Values higher
than that cause stability problems. Let’s try this procedure, which is called gradient descent.

# compute gradients
def loss_wrapper(w, b, data):

features = data[0]
labels = data[1]

(continues on next page)
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(continued from previous page)

y = linear_model(features, w, b)
return loss(y, labels)

loss_grad = jax.grad(loss_wrapper, (0, 1))

# test it out
loss_grad(w, b, (features, labels))

(DeviceArray([1.1313606e+06, 7.3055479e+03, 2.8128903e+05, 7.4776180e+04,
1.5807716e+04, 4.1010732e+03, 2.2745816e+04, 1.7236283e+04,
3.9615741e+05, 5.2891074e+03, 1.0585280e+03, 1.8357089e+03,
7.1248174e+03, 2.7012794e+05, 4.6752903e+05, 5.4541211e+03,
2.5596618e+06], dtype=float32),

DeviceArray(2671.3784, dtype=float32, weak_type=True))

We’ve computed the gradient. Now we’ll minimize it over a few steps.

loss_progress = []
eta = 1e-6
data = (features, labels)
for i in range(10):

grad = loss_grad(w, b, data)
w -= eta * grad[0]
b -= eta * grad[1]
loss_progress.append(loss_wrapper(w, b, data))

plt.plot(loss_progress)

plt.xlabel("Step")
plt.yscale("log")
plt.ylabel("Loss")
plt.title("Full Dataset Training Curve")
plt.show()
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2.3.6 Training Curve

The figure above is called a training curve. We’ll see these frequently in this book and they show us if the loss is
decreasing, indicating the model is learning. Training curves are also called learning curves. The x-axis may be example
number, total iterations through dataset (called epochs), or some other measure of amount of data used for training the
model.

2.3.7 Batching

batch

A batch is a subset of your data of size batch size. Batch size is usually as a power of 2 (e.g., 16, 128). Having random
batches of data is how gradient descent becomes stochastic gradient descent.

This is making good progress. But let’s try to speed things up with a small change. We’ll use batching, which is how
training is actually done inmachine learning. The small change is that rather than using all data at once, we only take a small
batch of data. Batching provides two benefits: it reduces the amount of time to compute an update to our parameters, and
it makes the training process random. The randomness makes it possible to escape local minima that might stop training
progress. This addition of batching makes our algorithm stochastic and thus we call this procedure stochastic gradient
descent (SGD). SGD, and variations of it, are the most common methods of training in deep learning.

# initialize our paramaters
# to be fair to previous method
w = np.random.normal(size=feature_dim)
b = 0.0

loss_progress = []
eta = 1e-6

(continues on next page)
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batch_size = 32
N = len(labels) # number of data points
data = (features, labels)
# compute how much data fits nicely into a batch
# and drop extra data
new_N = len(labels) // batch_size * batch_size

# the -1 means that numpy will compute
# what that dimension should be
batched_features = features[:new_N].reshape((-1, batch_size, feature_dim))
batched_labels = labels[:new_N].reshape((-1, batch_size))
# to make it random, we'll iterate over the batches randomly
indices = np.arange(new_N // batch_size)
np.random.shuffle(indices)
for i in indices:

# choose a random set of
# indices to slice our data
grad = loss_grad(w, b, (batched_features[i], batched_labels[i]))
w -= eta * grad[0]
b -= eta * grad[1]
# we still compute loss on whole dataset, but not every step
if i % 10 == 0:

loss_progress.append(loss_wrapper(w, b, data))

plt.plot(np.arange(len(loss_progress)) * 10, loss_progress)
plt.xlabel("Step")
plt.yscale("log")
plt.ylabel("Loss")
plt.title("Batched Loss Curve")
plt.show()

There are three changes to note:
1. The loss is lower than without batching
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2. There are more steps, even though we iterated over our dataset once instead of 10 times
3. The loss doesn’t always go down

The reason the loss is lower is because we’re able to take more steps even though we only see each data point once. That’s
because we update at each batch, giving more updates per iteration over the dataset. Specifically if 𝐵 is batch size, there
are 𝑁/𝐵 updates for every 1 update in the original gradient descent. The reason the loss doesn’t always go down is that
each time we evaluate it, it’s on a different set of data. Some molecules are harder to predict than others. Also, each step
we take in minimizing loss may not be correct because we only updated our parameters based on one batch. Assuming
our batches are mixed though, we will always improve in expectation (on average).

2.3.8 Standardize features

It seems we cannot get past a certain loss. If you examine the gradients you’ll see some of them are very large and some
are very small. Each of the features have different magnitudes. For example, molecular weights are large numbers. The
number of rings in a molecule is a small number. Each of these must use the same learning rate, 𝜂, and that is ok for some
but too small for others. If we increase 𝜂, our training procedure will explode because of these larger feature gradients.
A standard trick we can do is make all the features have the same magnitude, using the equation for standardization you
might see in your statistics textbook:

𝑥𝑖𝑗 = 𝑥𝑖𝑗 − ̄𝑥𝑗
𝜎𝑥𝑗

(2.5)

where ̄𝑥𝑗 is column mean and 𝜎𝑥𝑗
is column standard deviation. To be careful about contaminating training data with

test data – leaking information between train and test data – we should only use training data in computing the mean and
standard deviation. Wewant our test data to approximate howwe’ll use our model on unseen data, so we cannot knowwhat
these unseen features means/standard deviations might be and thus cannot use them at training time for standardization.

fstd = np.std(features, axis=0)
fmean = np.mean(features, axis=0)
std_features = (features - fmean) / fstd

# initialize our paramaters
# since we're changing the features
w = np.random.normal(scale=0.1, size=feature_dim)
b = 0.0

loss_progress = []
eta = 1e-2
batch_size = 32
N = len(labels) # number of data points
data = (std_features, labels)
# compute how much data fits nicely into a batch
# and drop extra data
new_N = len(labels) // batch_size * batch_size
num_epochs = 3

# the -1 means that numpy will compute
# what that dimension should be
batched_features = std_features[:new_N].reshape((-1, batch_size, feature_dim))
batched_labels = labels[:new_N].reshape((-1, batch_size))
indices = np.arange(new_N // batch_size)

# iterate through the dataset 3 times
for epoch in range(num_epochs):

(continues on next page)
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# to make it random, we'll iterate over the batches randomly
np.random.shuffle(indices)
for i in indices:

# choose a random set of
# indices to slice our data
grad = loss_grad(w, b, (batched_features[i], batched_labels[i]))
w -= eta * grad[0]
b -= eta * grad[1]
# we still compute loss on whole dataset, but not every step
if i % 50 == 0:

loss_progress.append(loss_wrapper(w, b, data))

plt.plot(np.arange(len(loss_progress)) * 50, loss_progress)
plt.xlabel("Step")
plt.yscale("log")
plt.ylabel("Loss")
plt.show()

Notice we safely increased our learning rate to 0.01, which is possible because all the features are of similar magnitude.
We also could keep training, since we’re gaining improvements.

2.3.9 Analyzing Model Performance

This is a large topic that we’ll explore more, but the first thing we typically examine in supervised learning is a parity
plot, which shows our predictions vs. our label prediction. What’s nice about this plot is that it works no matter what the
dimensions of the features are. A perfect fit would fall onto the line at 𝑦 = ̂𝑦

predicted_labels = linear_model(std_features, w, b)

plt.plot([-100, 100], [-100, 100])
plt.scatter(labels, predicted_labels, s=4, alpha=0.7)
plt.xlabel("Measured Solubility $y$")

(continues on next page)
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plt.ylabel("Predicted Solubility $\hat{y}$")
plt.xlim(-13.5, 2)
plt.ylim(-13.5, 2)
plt.show()

Final model assessment can be done with loss, but typically other metrics are also used. In regression, a correlation
coefficient is typically reported in addition to loss. In our example, this is computed as

# slice correlation between predict/labels
# from correlation matrix
np.corrcoef(labels, predicted_labels)[0, 1]

0.6475304402750959

A correlation coefficient of 0.65 is OK, but not great.

2.4 Unsupervised Learning

In unsupervised learning, the goal is to predict ̂𝑦 without labels. This seems like an impossible task. How do we judge
success? Typically, unsupervised learning can be broken into three categories:
Clustering

Here we assume {𝑦𝑖} is a class variable and try to partition our features into these classes. In clustering we are
simultaneously learning the definition of the classes (called clusters) and which cluster each feature should be assigned to.

Class

In machine learning, a class is a type of label like dog or cat. Formally, we have a set of possible labels (e.g., all
animals) and each feature vector has one (hard) or a probability distribution of classes (soft).
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Finding Signal
𝑥 is assumed to be made of two components: noise and signal (𝑦). We try to separate the signal 𝑦 from 𝑥 and discard

noise. Highly-related with representation learning, which we’ll see later.
Generative

Generative methods are methods where we try to learn 𝑃( ⃗𝑥) so that we can sample new values of ⃗𝑥. It is analogous
to 𝑦 being probability and we’re trying to estimate it. We’ll see these more later.

2.4.1 Clustering

Clustering is historically one of the most well-known and still popular machine learning methods. It’s always popular
because it can provide new insight from data. Clustering gives class labels where none existed and thus can help find
patterns in data. This is also a reason that it has become less popular in chemistry (and most fields): there is no right or
wrong answer. Two people doing clustering independently will often arrive at different answers. Nevertheless, it should
be a tool you know and can be a good exploration strategy.

cluster labels

Clustering comes in many variants and some blur what exactly 𝑦𝑖 is. For example, in some clustering methods 𝑦𝑖 can
include no assignment or 𝑦𝑖 is not a single class, but a tree of classes.

We’ll look at the classic clustering method: k-means. Wikipedia has a great article on this classic algorithm, so I won’t
try to repeat that. To make our clustering actually visible, we’ll start by projecting our features into 2 dimensions. This
will be covered in representation learning, so don’t worry about these steps.

# get down to 2 dimensions for easy visuals
embedding = sklearn.manifold.Isomap(n_components=2)
# only fit to every 25th point to make it fast
embedding.fit(std_features[::25, :])
reduced_features = embedding.transform(std_features)

We’re going to zoom into the middle 99th percentile of the data since some of the points are extremely far away (though
that is interesting!).

xlow, xhi = np.quantile(reduced_features, [0.005, 0.995], axis=0)

plt.figure(dpi=300)
plt.scatter(

reduced_features[:, 0],
reduced_features[:, 1],
s=4,
alpha=0.7,
c=labels,
edgecolors="none",

)
plt.xlim(xlow[0], xhi[0])
plt.ylim(xlow[1], xhi[1])
cb = plt.colorbar()
cb.set_label("Solubility")
plt.show()
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Dimensionality Reduction

Reducing ⃗𝑥, your feature vectors to a low dimensional space. The classic example is PCA, which is a linear operator.
However, most prefer nonlinear methods like t-SNE.

The dimensionality reduction has made our features only 2 dimensions. We can see some structure, especially with the
solubility as the coloring. Note in these kind of plots, where we have reduced dimensions in someway, we do not label
the axes because they are arbitrary.
Now we cluster. The main challenge in clustering is deciding how many clusters there should be. There are a number of
methods out there, but they basically come down to intuition. You, as the chemist, should use some knowledge outside
of the data to intuit what is the cluster number. Sounds unscientific? Yeah, that’s why clustering is hard.

# cluster - using whole features
kmeans = sklearn.cluster.KMeans(n_clusters=4, random_state=0)
kmeans.fit(std_features)

Very simple procedure! Now we’ll visualize by coloring our data by the class assigned.

plt.figure(dpi=300)
point_colors = [f"C{i}" for i in kmeans.labels_]
plt.scatter(

reduced_features[:, 0],
reduced_features[:, 1],
s=4,
alpha=0.7,
c=point_colors,
edgecolors="none",

)
# make legend
legend_elements = [

plt.matplotlib.patches.Patch(
facecolor=f"C{i}", edgecolor="none", label=f"Class {i}"

)

(continues on next page)

38 Chapter 2. Introduction to Machine Learning

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html


Deep Learning for Molecules and Materials

(continued from previous page)

for i in range(4)
]
plt.legend(handles=legend_elements)
plt.xlim(xlow[0], xhi[0])
plt.ylim(xlow[1], xhi[1])
plt.show()

2.4.2 Choosing Cluster Number

How do we know we had the correct number? Intuition. There is one tool we can use to help us, called an elbow plot.
The k-means clusters can be used to compute the mean squared distance from cluster center, basically a version of loss
function. However, if we treat cluster number as a trainable parameter we’d find the best fit at the cluster number being
equal to number of data points. Not helpful! However, we can see when the slope of this loss becomes approximately
constant and assume that those extra clusters are adding no new insight. Let’s plot the loss and see what happens. Note
we’ll be using a subsample of the dataset to save time.

# make an elbow plot
loss = []
cn = range(2, 15)
for i in cn:

kmeans = sklearn.cluster.KMeans(n_clusters=i, random_state=0)
# use every 50th point
kmeans.fit(std_features[::50])
# we get score -> opposite of loss
# so take -
loss.append(-kmeans.score(std_features[::50]))

plt.plot(cn, loss, "o-")
plt.xlabel("Cluster Number")
plt.ylabel("Loss")
plt.title("Elbow Plot")
plt.show()

2.4. Unsupervised Learning 39



Deep Learning for Molecules and Materials

Where is the transition? If I squint, maybe at 6? 3? 4? 7? Let’s choose 4 because it sounds nice and is plausible based
on the data. The last task is to get some insight into what the clusters actually are. We can extract the most centered data
points (closest to cluster center) and consider them to be representative of the cluster.

# cluster - using whole features
kmeans = sklearn.cluster.KMeans(n_clusters=4, random_state=0)
kmeans.fit(std_features)

cluster_center_idx = []
for c in kmeans.cluster_centers_:

# find point closest
i = np.argmin(np.sum((std_features - c) ** 2, axis=1))
cluster_center_idx.append(i)

cluster_centers = soldata.iloc[cluster_center_idx, :]

legend_text = [f"Class {i}" for i in range(4)]

# now plot them on a grid
cluster_mols = [rdkit.Chem.MolFromInchi(inchi) for inchi in cluster_centers.InChI]
rdkit.Chem.Draw.MolsToGridImage(

cluster_mols, molsPerRow=2, subImgSize=(400, 400), legends=legend_text
)

<IPython.core.display.SVG object>

So what exactly are these classes? Unclear. We intentionally did not reveal solubility (unsupervised learning) so there
is not necessarily any connection with solubility. These classes are more a result of which features were chosen for
the dataset. You could make a hypothesis, like class 1 is all negatively charged or class 0 is aliphatic, and investigate.
Ultimately though there is no best clustering and often unsupervised learning is more about finding insight or patterns and
not about producing a highly-accurate model.
The elbow plot method is one of many approaches to selecting cluster number [PDN05]. I prefer it because it’s quite clear
that you are using intuition. More sophisticated methods sort-of conceal the fact that there is no right or wrong answer in

40 Chapter 2. Introduction to Machine Learning



Deep Learning for Molecules and Materials

clustering.

Note: This process does not result in a function that predicts solubility. We might try to gain insight about predicting
solubility with our predicted classes, but that is not the goal of clustering.

2.5 Chapter Summary

• Supervised machine learning is building models that can predict labels 𝑦 from input features ⃗𝑥.
• Data can be labeled or unlabeled.
• Models are trained by minimizing loss with stochastic gradient descent.
• Unsupervised learning is building models that can find patterns in data.
• Clustering is unsupervised learning where the model groups the data points into clusters

2.6 Exercises

2.6.1 Data

1. Using numpy reductions np.amin, np.std, etc. (not pandas!), compute the mean, min, max, and standard
deviation for each feature across all data points.

2. Use rdkit to draw the 2 highest molecular weight molecules. Note they look strange.

2.6.2 Linear Models

1. Prove that a nonlinear model like 𝑦 = ⃗𝑤1 ⋅ sin ( ⃗𝑥) + ⃗𝑤2 ⋅ ⃗𝑥 + 𝑏 could be represented as a linear model.
2. Write out the linear model equation in Einstein notation in batched form. Batched form means we explicitly have

an index indicating batch. For example, the labels will be 𝑦𝑏𝑖 where 𝑏 indicates the batch of data and 𝑖 indicates
the individual data point.

2.6.3 Minimizing Loss

1. We standardized the features, but not the labels. Would standardizing the labels affect our choice of learning rate?
Prove your answer.

2. Implement a loss that is mean absolute error, instead of mean squared error. Compute its gradient using jax.
3. Using the standardized features, show what effect batch size has on training. Use batch sizes of 1, 8, 32, 256, 1024.

Make sure you re-initialize your weights in between each run. Plot the log-loss for each batch size on the same plot.
Describe your results.
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2.6.4 Clustering

1. We say that clustering is a type of unsupervised learning and that it predicts the labels. What exactly are the
predicted labels in clustering? Write down what the predicted labels might look like for a few data points.

2. In clustering, we predict labels from features. You can still cluster if you have labels, by just pretending they are
features. Give two reasons why it would not be a good idea to do clustering in this manner, where we treat the
labels as features and try to predict new labels that represent class.

3. On the isomap plot (reduced dimension plot), color the points by which group they fall in (G1, G2, etc.). Is there
any relationship between this and the clustering?

2.7 Cited References
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CHAPTER

THREE

REGRESSION & MODEL ASSESSMENT

Regression is supervised learning with continuous (or sometimes discrete) labels. You are given labeled data consisting
of features and labels { ⃗𝑥𝑖, 𝑦𝑖}. The goal is to find a function that describes their relationship, ̂𝑓( ⃗𝑥) = ̂𝑦. A more
formal discussion of the concepts discussed here can be found in Chapter 3 of Bishop’s Pattern Recognition and Machine
Learning[Bis06].

Audience & Objectives
This lecture introduces some probability theory, especially expectations. You can get a refresher of probability of random
variables and/or expectations. Recall an expectation is 𝐸[𝑥] = ∑ 𝑃(𝑥)𝑥 and variance is 𝐸[(𝑥 − 𝐸[𝑥])2]. We also use
and discuss linear regression techniques. After completing this chapter, you should be able to:

• Perform multi-dimensional regression with a loss function
• Understand how to and why we batch
• Understand splitting of data
• Reason about model bias and model variance
• Assess model fit and generalization error

3.1 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages.

Tip: To install packages, execute this code in a new cell.

!pip install dmol-book

If you find install problems, you can get the latest working versions of packages used in this book here

As usual, the code below sets-up our imports.

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import jax.numpy as jnp
from jax.example_libraries import optimizers
import jax
import dmol
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# soldata = pd.read_csv('https://dataverse.harvard.edu/api/access/datafile/3407241?
↪format=original&gbrecs=true')

soldata = pd.read_csv(
"https://github.com/whitead/dmol-book/raw/master/data/curated-solubility-dataset.

↪csv"
)
features_start_at = list(soldata.columns).index("MolWt")
feature_names = soldata.columns[features_start_at:]

3.2 Overfitting

We’ll be working again with the AqSolDB[SKE19] dataset. It has about 10,000 unique compounds with measured solu-
bility in water (label) and 17 molecular descriptors (features). We need to create a better assessment of our supervised
ML models. The goal of our ML model is to predict solubility of new unseen molecules. Therefore, to assess we should
test on unseen molecules. We will split our data into two subsets: training data and testing data. Typically this is
done with an 80%/20%, so that you train on 80% of your data and test on the remaining 20%. In our case, we’ll just
do 50%/50% because we have plenty of data and thus do not need to take 80% for training. We’ll be using a subset, 50
molecules chosen randomly, rather than the whole dataset. So we’ll have 50 training molecules and 50 testing molecules.
Let’s begin by seeing what effect the split of train/test has on our linear model introduced in the previous chapter.

# Get 50 points and split into train/test
sample = soldata.sample(50, replace=False)
train = sample[:25]
test = sample[25:]

# standardize the features using only train
test[feature_names] -= train[feature_names].mean()
test[feature_names] /= train[feature_names].std()
train[feature_names] -= train[feature_names].mean()
train[feature_names] /= train[feature_names].std()

# convert from pandas dataframe to numpy arrays
x = train[feature_names].values
y = train["Solubility"].values
test_x = test[feature_names].values
test_y = test["Solubility"].values

We will again use a linear model, ̂𝑦 = �⃗� ⃗𝑥 + 𝑏. One change we’ll make is using the @jit decorator from jax. This
decorator will tell jax to inspect our function, simplify it, and compile it to run quickly on a GPU (if available) or CPU.
The rest of our work is the same as the previous chapter. We begin with defining our loss, which is mean squared error
(MSE) again.

A decorator is a Python-specific syntax that modifies how a function behaves. It is indicated with the @ symbol.
Examples include caching results, compiling the function, running it in parallel, and timing its execution.

# define our loss function
@jax.jit
def loss(w, b, x, y):

return jnp.mean((y - jnp.dot(x, w) - b) ** 2)

(continues on next page)
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(continued from previous page)

loss_grad = jax.grad(loss, (0, 1))
w = np.random.normal(size=x.shape[1])
b = 0.0
loss_grad(w, b, x, y)

WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0␣
↪and rerun for more info.)

(DeviceArray([-2.8831835 , 1.3794075 , -3.0262635 , -3.1956701 ,
-4.007525 , -0.83476734, -3.0994835 , -4.0455275 ,
-3.675129 , 2.5466921 , -3.11543 , -4.171584 ,
-1.5834932 , -3.3554041 , -3.1797354 , 0.86207145,
-2.0010393 ], dtype=float32),

DeviceArray(5.7721677, dtype=float32, weak_type=True))

Now we will train our model, again using gradient descent. This time we will not batch, since our training data only has
25 points. Can you see what the learning rate is? Why is it so different from the last chapter when we used the whole
dataset?

loss_progress = []
test_loss_progress = []
eta = 0.05
for i in range(2000):

grad = loss_grad(w, b, x, y)
w -= eta * grad[0]
b -= eta * grad[1]
loss_progress.append(loss(w, b, x, y))
test_loss_progress.append(loss(w, b, test_x, test_y))

plt.plot(loss_progress, label="Training Loss")
plt.plot(test_loss_progress, label="Testing Loss")

plt.xlabel("Step")
plt.yscale("log")
plt.legend()
plt.ylabel("Loss")
plt.show()
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We’ve plotted above the loss on our training data and testing data. The loss on training goes down after each step, as
we would expect for gradient descent. However, the testing loss goes down and then starts to go back up. This is called
overfitting. This is one of the key challenges in ML and we’ll often be discussing it.
Overfitting is a result of training for too many steps or with too many parameters, resulting in our model learning the
noise in the training data. The noise is specific for the training data and when computing loss on the test data there is
poor performance.
To understand this, let’s first define noise. Assume that there is a “perfect” function 𝑓( ⃗𝑥) that can compute labels from
features. Our model is an estimate ̂𝑓( ⃗𝑥) of that function. Even 𝑓( ⃗𝑥) will not reproduce the data exactly because our
features do not capture everything that goes into solubility and/or there is error in the solubility measurements themselves.
Mathematically,

𝑦 = 𝑓( ⃗𝑥) + 𝜖 (3.1)
where 𝜖 is a random number with mean 0 and unknown standard deviation 𝜎. 𝜖 is the noise. When fitting our function,

̂𝑓( ⃗𝑥), the noise is fixed because our labels 𝑦 are fixed. That means we can accidentally learn to approximate the sum of
𝑓( ⃗𝑥) and the noise 𝜖𝑖 instead of only capturing 𝑓( ⃗𝑥). The noise is random and uncorrelated with solubility. When we
move to our testing dataset, this noise changes because we have new data and our model’s effort to reproduce noise is
useless because the new data has new noise. This leads to worse performance.
Overfitting arises when three things happen: you have noise, you have extra features or some part of your features are
not correlated with the labels, and your training has converged (your model fit is at the global minimum). This last one is
what we saw above. Our model wasn’t overfit after about 100 steps (the training and testing loss were both decreasing),
but then they starting going in opposite directions. Let’s see how these things interplay to lead to overfitting in an example
where we can exactly control the features and noise.
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3.2.1 Overfitting with Synthetic Data

We’ll explore overfitting in a synthetic example. Our real function we’re trying to learn will be:

𝑓(𝑥) = 𝑥3 − 𝑥2 + 𝑥 − 1 (3.2)

which we can rewrite as a linear model:

𝑓( ⃗𝑥) = �⃗� ⋅ ⃗𝑥 = [1, −1, 1, −1] ⋅ [𝑥3, 𝑥2, 𝑥, 1] (3.3)

where our features are [𝑥3, 𝑥2, 𝑥, 1]. To do our split, we’ll take the positive points as training data and the negative as
testing data. To avoid the issue of convergence, we will use least squares to fit these models instead of gradient descent.
Let’s establish a benchmark. How well can a model do without noise? We’ll use 10 training data points and 10 testing
data points. We’ll put our testing data in the center of the polynomial.
Expand the Python cells below to see how this is implemented.

# generate data from polynomial
N = 20
syn_x = np.linspace(-3, 3, N)
# create feature matrix
syn_features = np.vstack([syn_x**3, syn_x**2, syn_x, np.ones_like(syn_x)]).T
syn_labels = syn_x**3 - syn_x**2 + syn_x - 1

There is no overfitting and the regression is quite accurate without noise. Now we’ll add noise to both the training labels.

train_y = train_y + np.random.normal(scale=5, size=train_y.shape)
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Adding noise reduces the accuracy on the training data. The testing labels have no noise and the model is not overfit, so
the accuracy is good for the testing loss.
Now we’ll try adding redundant features. Our new features will be [𝑥6, 𝑥5, 𝑥4, 𝑥3, 𝑥2, 𝑥, 1]. Still less than our data point
number but not all features are necessary to fit the labels.

syn_features = np.vstack([syn_x**i for i in range(7)]).T

This is an overfit model. The training loss went down (note the noise was the same in the previous two examples), but at
the expense of a large decrease in testing loss. This wasn’t possible in the previous example because over-fitting to noise
wasn’t feasible when each feature was necessary to capture the correlation with the labels.
Let’s see an example where the feature number is the same but they aren’t perfectly correlated with labels, meaning we
cannot match the labels even if there was no noise.
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syn_features = np.vstack(
[syn_x**2, syn_x, np.exp(-(syn_x**2)), np.cos(syn_x), np.ones_like(syn_x)]

).T

It’s arguable if this is overfitting. Yes, the testing loss is high but it could be argued it’s more to do with the poor feature
choice. In any case, even though our parameter number is less than the clear cut case above, there is still left over variance
in our features which can be devoted to fitting noise.
Would there overfitting with fewer features that are perfectly correlated with labels?

Answer
Yes, because we can use the left over variance in our features to fit noise.

3.2.2 Overfitting Conclusion

• Overfitting is inevitable in real data because we cannot avoid noise and rarely have the perfect features.
• Overfitting can be assessed by splitting our data into a train and test split, which mimics how we would use the
model (i.e., on unseen data).

• Overfitting is especially affected by having too many features or features that don’t correlate well with the labels.
• We can identify overfitting from a loss curve which shows the testing loss rising while training loss is decreasing.
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3.3 Exploring Effect of Feature Number

We’ve seen that overfitting is sensitive to the number and choice of features. Feature selection is a critical decision in
supervised learning. We’ll return to the solubility dataset to discuss this. It has 17 molecular descriptors, but these are
just a small fraction of the possible molecular descriptors that can be used. For example, there is a software called
Dragon that can compute over 5,000 descriptors. You can also create linear combinations of descriptors and pass them
through functions. Then there is the possibility of experimental data, data from molecular simulations, and from quantum
calculations. There is essentially an unlimited number of possible molecular descriptors. We’ll start this chapter by
exploring what effect of number of features (dimension of features) has on the data.

Descriptor is chemistry and materials specific word for feature. It pre-dates the word features and comes from the
field of “qauntitative-structure activity relationship” (QSAR), which has a long history in drug design and molecular
design.

We are now working with a real dataset, which means there is randomness from which features we choose, which training
data we choose, and randomness in the labels themselves. In the results below, they are averaged over possible features
and possible training data splits to deal with this. Thus the code is complex. You can see it on the Github repository, but
I’ve omitted it here for simplicity.

Fig. 3.1: Effect of feature number on 25 training data points averaged over 10 data samples/feature choices combinations.
Notice there is not a significant change when the number of features crosses the number of data points.

Fig. 3.1 shows the effect of choosing different features on both the loss on training data and the loss on test data. There are
three regimes in this plot. At 1-3 features, we are underfitmeaning both the training and testing losses could be improved
with more features or more training. In this case, it is because there are too few features. Until about 10 features, we
see that adding new features slightly improves training data but doesn’t help test data meaning we’re probably slightly
overfitting. Then at 10, there is a large increase as we move to the overfit regime. Finally at about 30 features, our model
is no longer converging and training loss rises because it is too difficult to train the increasingly complex model. “Difficult”
here is a relative term; you can easily train for more time on this simple model but this is meant as an example.
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Fig. 3.2: Effect of feature number on 250 training data points averaged over 10 data samples/feature choices combinations.

Fig. 3.2 shows the same analysis but for 250 train and 250 test data. The accuracy on test data is better (about 1.9 vs 2.5).
There is not much overfitting visible here. The model is clearly underfit until about 10 features and then each additional
feature has little effect. Past 20 features, we again see an underfit because the model is not trained well. This could fixed
by adding more training steps.

Increasing feature numbers is useful up to a certain point. Although some methods are unstable when the number of
features is exactly the same as the number of data points, there is reason overfitting begins at or near feature numbers equal
to the number of data points. Overfitting can disappear at large feature numbers because of model size and complexity.
Here there is also a risk of underfitting.
The risk of overfitting is lower as your dataset size increases. The reason for this is that the noise becomes smaller than
the effect of labels on training as you increase data points. Recall from the Central Limit Theorem that reducing noise by
a factor of 10 requires 100 times more data, so this is not as efficient as choosing better features. Thinking about these
trade-offs, to double your feature number you should quadruple the number of data points to reduce the risk of overfitting.
Thus there is a strong relationship between how complex your model can be, the achievable accuracy, the data required,
and the noise in labels.

3.4 Bias Variance Decomposition

We will now try to be more systematic about this difference in model performance between training and testing data.
Consider an unseen label 𝑦 and our model ̂𝑓( ⃗𝑥). Our error on the unseen label is:

𝐸 [(𝑦 − ̂𝑓( ⃗𝑥))
2
] (3.4)

What is the expectation over? For now, let’s just assume the only source of randomness is in the noise from the label
(recall 𝑦 = 𝑓( ⃗𝑥) + 𝜖). Then our expression becomes:

𝐸 [(𝑦 − ̂𝑓( ⃗𝑥))
2
] = 𝐸 [𝑦2] + 𝐸 [ ̂𝑓( ⃗𝑥)2] − 2𝐸 [𝑦 ̂𝑓( ⃗𝑥)] (3.5)
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𝐸 [(𝑦 − ̂𝑓( ⃗𝑥))
2
] = 𝐸 [(𝑓( ⃗𝑥) − 𝜖)2] + ̂𝑓( ⃗𝑥)2 − 2𝐸 [(𝑓( ⃗𝑥) − 𝜖)] ̂𝑓( ⃗𝑥) (3.6)

I have dropped the expectations over deterministic expression ̂𝑓 . You can continue this, again dropping any 𝐸[𝑓( ⃗𝑥)]
terms and using the definition of 𝜖, a zero mean normal distribution with standard deviation 𝜎. You will arrive at:

𝐸 [(𝑦 − ̂𝑓( ⃗𝑥))
2
] = (𝑓( ⃗𝑥) − ̂𝑓( ⃗𝑥))

2
+ 𝜎2 (3.7)

This expression means the best we can do on an unseen label is the noise of the label. This is very reasonable, and probably
matches your intuition. The best you can do is match exactly the noise in the label when you have a perfect agreement
between 𝑓( ⃗𝑥) and ̂𝑓( ⃗𝑥)
However, this analysis did not account for the fact our choice of training data is random. Things become more complex
when we consider that our choice of training data is random. Return to Equation (3.4) and now replace ̂𝑓 ( ⃗𝑥)with ̂𝑓 ( ⃗𝑥;D)
where D is a random variable indicating the random data sample. You can find a complete derivation on Wikipedia. The
key change is that (𝑓( ⃗𝑥) − ̂𝑓 ( ⃗𝑥;D))

2
is now a random variable. Equation (3.7) becomes:

𝐸 [(𝑦 − ̂𝑓( ⃗𝑥))
2
] = 𝐸 [𝑓( ⃗𝑥) − ̂𝑓 ( ⃗𝑥;D)]

2
+ 𝐸 [(𝐸 [ ̂𝑓 ( ⃗𝑥;D)] − ̂𝑓 ( ⃗𝑥;D))

2
] + 𝜎2 (3.8)

This expression is the most important equation for understanding ML and deep learning training. The first term in this
expression is called bias and captures how far away our model is from the correct function 𝑓( ⃗𝑥). This is the expected
(average) loss we get given a random dataset evaluated on a new unseen data point. You may think this the most important
quantity – expected difference between the true function and our model on a new data point. However, bias does not
determine the expected error on an unseen data point alone, there other terms.

In Equation(3.8) ⃗𝑥 is a fixed quantity, unlike what you may be used to in probability. The actual random variables are
𝜖 (noise in label) and D (our chosen training data).

The second term is surprising. It is called the variance and captures how much change at the unseen data point ( ⃗𝑥, 𝑦)
there is due to changes in the random variable D. What is surprising is that the expected loss depends on the variance of
the learned model. Think carefully about this. A model which is highly sensitive to which training data is chosen has a
high expected error on test data. Furthermore, remember that this term variance is different than variance in a feature.
It captures how the model value changes at a particular ⃗𝑥 as a function of changing the training data.

Note: There are three sources of randomness in the expectation: the choice of test data, the label noise, and the choice
of training data. However, once you pick the training data, the test data is fixed so we do not indicate or worry about this.
A quantity like 𝐸[ ̂𝑓( ⃗𝑥)] means splitting your data every possible way, fitting the models, then computing the value ̂𝑓( ⃗𝑥)
on the unseen test ⃗𝑥. Then you take the average over the unseen test values. You can also skip the last step and leave
𝐸[ ̂𝑓( ⃗𝑥)] as a function of ⃗𝑥, which is what is plotted in Fig. 3.3 and Fig. 3.4.

These three terms: noise, bias, and variance set the minimum value for test error. Noise is set by your data and not
controllable. However, bias and variance are controllable. What does a high bias, low variance model look like? A 1D
linear model is a good example. See Fig. 3.3. It has one parameter so a sample of data points gives a consistent estimate.
However, a 1D model cannot capture the true 𝑓( ⃗𝑥) so it has a large average error (bias) at a given point. What does a low
bias, high variance model look like? An overfit model like the one shown in Fig. 3.4. It has extreme outliers on test data,
but on average it actually has a low bias.
The Tradeoff
The way to change bias and variance is through model complexity, which is feature number in our linear models. In-
creasing model complexity reduces bias and increases variance. There is an optimum for our polynomial example, shown
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Fig. 3.3: A single feature fit to the polynomial model example above. The left panel shows a single train/test split and the
resulting model fit. The right panel shows the result of many fits. The model variance is the variance across each of those
model fits and the bias is the agreement of the average model. It can be seen that this model has low variance but poor
average agreement (high bias).

Fig. 3.4: A 7 feature fit to the polynomial model example above. The left panel shows a single train/test split and the
resulting model fit. The right panel shows the result of many fits. The model variance is the variance across each of those
model fits and the bias is the agreement of the average model. It can be seen that this model has high variance but good
average agreement (low bias).
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Fig. 3.5: The bias, variance, and fit on test values for the polynomial example averaged across 2,500 train/test splits. As
the number of features increases, variance increases and bias decreases. There is a minimum at 4 features. The plot stops
at 5 because the variance becomes very large beyond 5.

in Fig. 3.5. Indeed this is true of most ML models, although it can be difficult to cleanly increase model complexity and
keep training converged. However, this is not typically true in deep learning with neural networks[NMB+18].

Note: The bias–variance tradeoff for model complexity is based on experience. The decomposition above does not prove
a tradeoff, just that you can split these two terms. Intentionally underfitting, adding noise, and exchanging one feature for
another are all ways to affect bias and variance without adjusting complexity. Also, sometimes you can just improve both
with better models.

The bias–variance tradeoff is powerful for explaining the intuition we’ve learned from examples above. Large datasets
reduce model variance, explaining why it is possible to increase model complexity to improve model accuracy only with
larger datasets. Overfitting reduces bias at the cost of high variance. Not training long enough increases bias, but reduces
variance as well since you can only move so far from your starting parameters.

3.5 Regularization

Adding features is a challenging way to exchange model bias and variance because it comes in discrete steps and some
features are just better than others. A different way is to use a complex model (all features) but reduce variance through
regularization. Regularization is the addition of an extra term to your loss function that captures some unwanted property
about your model that you want to minimize.
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3.5.1 L2 Regularization

You can add the bias 𝑏 to the regularization term, but this should only be done if you have some prior belief that the
bias should be 0 – like if it represents some physical quantity that should be minimized. Otherwise minimizing 𝑏 has
no effect on overfitting and so is not part of regularization.

Our first example is the magnitude of fit coefficients. The magnitude of the coefficients is ∑𝑘 𝑤2
𝑘 where 𝑤𝑘 the index of

a single coefficient. We add this to our loss function:

𝐿 = 1
𝑁

𝑁
∑

𝑖
[𝑦𝑖 − ̂𝑓( ⃗𝑥𝑖, �⃗�, 𝑏)]

2
+ 𝜆 ∑

𝑘
𝑤2

𝑘 (3.9)

where 𝜆 is our strength of regularization. By changing 𝜆, we control how large the magnitude of our parameters are and
that directly reduces the variance. You can see the result in Fig. 3.6 for our polynomial example. Increasing the strength
of regularization decreases variance at the cost of increasing model bias. Remember in deep learning there isn’t as much
of a tradeoff and often you just get a reduction in variance with no degradation in bias. Adding L2 regularization with a
linear model has a specific name: Ridge Regression.

Fig. 3.6: A 7 feature fit to the polynomial model example above with increasing strength of regularization. The vertical
bars indicate standard deviation of model at each point.

Why does this work? Look at the gradient of a particular weight of our new loss function:

𝜕𝐿
𝜕𝑤4

= 2
𝑁

𝑁
∑

𝑖
[𝑦𝑖 − ̂𝑓( ⃗𝑥𝑖, �⃗�, 𝑏)] 𝜕 ̂𝑓( ⃗𝑥𝑖, �⃗�, 𝑏)

𝜕𝑤4
+ 2𝜆𝑤4 (3.10)

where𝑤4 is one of our weights. The first term on the right-hand side accounts for how𝑤4 affects our accuracy, like usual.
The second term is from the regularization. You can see that the gradient is just the value of weight times a constant.
Let’s contract the first term into a variable called 𝑔𝑤4

and look at how this new gradient affects our updates to 𝑤4. Our
gradient descent update of 𝑤4 becomes:

𝑤′
4 = 𝑤4 − 𝜂𝑔𝑤4

− 2𝜂𝜆𝑤4 (3.11)
So our regularization pushes 𝑤′

4 to always have a lower magnitude. If 𝑤′
4 = 2.5, the update will include a term of

−2𝜂𝜆2.5, pushing our weight value closer to zero. This means our weights always are pushed towards zero. Of course
the term coming from model error (𝑔𝑤4

) also has an effect so that we end up at a balance of lower magnitude weights and
model error. We control that balance through the 𝜆 term.
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The terms L1 and L2 come from the definition of norms. They indicate the coefficient used in the norm: (∑𝑖 𝑥𝑝
𝑖 )1/𝑝,

where 𝑝 = 1 for L1 and 𝑝 = 2 for L2. Others exist, like 𝑝 = 0 which counts dimension and 𝑝 = ∞ which takes the
maximum element. The “L” comes from the word Lebesgue integral, via a confusing path.

3.5.2 L1 Regularization

L1 regularization changes our loss to be the following:

𝐿 = 1
𝑁

𝑁
∑

𝑖
[𝑦𝑖 − ̂𝑓( ⃗𝑥𝑖, �⃗�, 𝑏)]

2
+ 𝜆 ∑

𝑘
|𝑤𝑘| (3.12)

It may appear at first that this is identical to L2. In fact, the L1 regularization has a powerful benefit: it induces sparsity.
L2 just causes regression coefficients to be on average lower, but L1 forces some coefficients to be 0. This gives us a
kind of “automatic” feature selection. This is called Lasso Regression when you combine L1 regularization with linear
regression.
As far as choosing which regularization to use, I’ll quote Frank Harrell, a biostatistics professor at Vanderbilt:

Generally speaking if you want optimum prediction use L2. If you want parsimony at some sacrifice of
predictive discrimination use L1. But note that the parsimony can be illusory, e.g., repeating the lasso
process using the bootstrap [introduced below] will often reveal significant instability in the list of features
“selected” especially when predictors are correlated with each other.

3.6 Strategies to Assess Models

We will now discuss more ways to assess model performance. These are more robust approaches to assess loss on testing
data.

3.6.1 k-Fold Cross-Validation

The bias–variance decomposition shows that our testing error is sensitive to what training data has been chosen. The
expected mean test error 𝐸 [(𝑦 − ̂𝑓( ⃗𝑥))

2
] depends on the label noise and the way we split our data into training and

testing data. Thus far, we’ve only gotten a single sample from this expectation by splitting. One way to better estimate
the value on unseen data is to repeat the process of splitting data into training and testing multiple times. This is called
k-fold cross-validation, where 𝑘 is the number of times you repeat the process. k-fold cross-validation is useful because
certain high-variance model choices can give different testing errors depending on the train/test split. k-fold also provides
multiple samples so that you can estimate the uncertainty in testing error. As all things to do with model variance,
the smaller the dataset the more important this is. Typically with very large datasets k-fold cross-validation is not done
because label noise dominates and testing a model k times can be time-consuming.
k-fold cross-validation has a specific process for splitting testing and training data. What we did previously was split into
a 50/50 split of training and testing. In k-fold, we split our data into k segments. Then we train on k-1 segments and test
on the last segment. You can do this k-ways. For example, with K = 3 you would split your data into A, B, C. The first
train/test split would be A, B for training and C for testing. Then B, C for training and A for testing. The last would be A,
C for training and B for testing. Following this procedure means that your percentage split will be 90/10 for 𝑘 = 10 and
50/50 for 𝑘 = 2. This has a disadvantage that the number of estimates for testing error depends on size of train/test split.
For example, you cannot get 10 estimates for an 80/20 split. An 80/20 split means exactly 5-fold cross-validation. We’ll
see other methods that relax this later on. The 80/20 is a typical rule that balances having enough data for good training
and enough to robustly assess how well your model performs.
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Let’s now use k-fold cross-validation in two examples: our full dataset and a smaller 25 data point sample. Rather than
using gradient descent here, we’ll just use the pseudo-inverse to keep our code simple. The pseudo-inverse is the least-
squares solution.

The final answer in this case is the average of these values: 2.69±2.25. The advantage of the k-fold is that we can report
standard deviation like this.
Now what effect does k have on the test error? Let’s see how our choice of k matters

As you can see, there is not much sensitivity to k. This is good, because k is mostly arbitrary. Larger k means more
samples, but each test data is smaller so that these two effects should balance out.
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Large datasets are not that sensitive because the training and testing splits are large. Let us examine what happens with
𝑁 = 25, a realistic case in chemistry data. We’ll just pick 25 data points at the beginning and not change that choice,
mocking what would happen in a real example.

Our results are a little sensitive to the choice of 𝑘. Now why might test error decrease? Remember that a larger 𝑘 means
more data points for training. This did not matter above when we had 10,000 data points. Now it is very importatnt, since
we only have 25 data points. Thus larger k means more training data.

3.6.2 Leave-one-out CV

Larger k means more training data, so what is the largest it can be? Remember that k is the number segments in your data.
So 𝑘 = 𝑁 is the max, where each data point is a segement. This is called leave-one-out cross-validation (LOOCV). It
creates 𝑁 different models, one for each data point left out, and so is only used for small datasets. Thus the advantage of
LOOCV is it maximizes training data, but maximizes the number of times the model needs to be trained.

3.7 Computing Other Measures

Using LOOCV and k-fold cross-validation, we’re able to predict test error. This “test error” is specifically an expected
error on an unseen data point. Now how do we actually treat a new data point? What will we report as the certainty in a
new point? The test error? We’ll call this point the prediction point and we’ll try to estimate the quantiles of this point.
Quantiles are the building blocks for confidence intervals. Recall that confidence intervals allow us to report our model
prediction as 4.3 ± 0.2, for example.

Classically bootstrap resampling and jacknife, its predecessor, are used for estimating variance in model parameters
(i.e., model variance). However, they are more commonly used in ML for predicting confidence intervals and/or test
error for new points (also called generalization error).
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3.7.1 Bootstrap Resampling

To estimate quantiles, we need to have a series of observations of predictions from the prediction point ̂𝑓( ⃗𝑥′), where ⃗𝑥′ is
the prediction point. For example, we could do 5-fold cross-validation and have 5 estimates of ̂𝑓𝑘( ⃗𝑥′) and could estimate
the quantiles using a t-statistic. Instead, we’ll use a method called bootstrap resampling which removes the restriction
that we can only use 1 − 1/𝑘 of the training data. Bootstrap resampling is a general process for estimating uncertainty
for empirical statistics without assuming a probability distribution (i.e., non-parametric). In bootstrap resampling, we
create as many as desired new training datasets that are the same size as the original by sampling with replacement from
the original dataset. That means our new dataset has fewer members than the original and makes up the difference with
duplicates. Let’s see an example. If your training dataset originally has data A, B, C, D, E, our bootstrap resampled
training data is:

1. A, B, B, D, E
2. B, C, C, C, E
3. A, B, D, E, E
4. A, B, C, D, E
5. A, A, C, C, D

and so forth. The “with replacement” means that we allow repeats. This gives some variation to our training data. It also
means we can generate 2𝑁 new datasets, which is practically as many as we want. Let’s see now how we could use this to
quantile the estimate for a prediction on a test point. We’ll set 𝑁 = 1000 and do bootstrap resampling for 100 iterations.

# Create training data and 1 test point
N = 1000
# this line gets the data for our example
# it is not the bootstrap resampling
tmp = soldata.sample(N + 1, replace=False)
small_soldata = tmp.iloc[:N]
predict_point = tmp.iloc[-1]

samples = 100
predictions = []
for i in range(samples):

# choose with replacement indices to make new dataset
idx = np.random.choice(np.arange(N), size=N, replace=True)
train = small_soldata.iloc[idx]
x, y = train[feature_names].values, train["Solubility"].values
# compute coefficients
w, *_ = np.linalg.lstsq(x, y)
# compute intercept (b)
b = np.mean(y - np.dot(x, w))
# compute test prediction
predictions.append(np.dot(predict_point[feature_names].values, w) + b)

# compute quantiles (lower, median, upper)
qint = np.quantile(predictions, [0.025, 0.5, 0.975])
# compute avg distance from median to report +/-
print(

f'prediction = {qint[1]:.2f} +/- {(qint[-1] - qint[0]) / 2:.2f}, label = {predict_
↪point["Solubility"]:.2f}'

)

prediction = -4.08 +/- 0.41, label = -3.45
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The resulting prediction has confidence intervals, thanks to the bootstrap resampling. This approach has a few disadvan-
tages though. The first is that we need to produce and keep 100 models, one for each bootstrap resample. Of course you
could choose fewer, but you need to have enough for good statistics.
Another issue is that this process does not give a reportable test error. We could further split our data again and do k-fold
cross-validation on this approach to get test error. However, this is a bit overly complex and then we’ll be at a similar
problem that we’ll have k sets of 100 models and it’s not obvious how to combine them. These prediction intervals also
under-estimate the model bias, because it has no estimate of the test error. It only accounts for variation due to training
data. Using the language above, it only accounts for model variance but not model bias.
Bootstrap resampling is still an excellent technique that is used often to estimate uncertainties. However, it is not a great
choice for estimating model error on unseen datapoints.

3.7.2 Jacknife+

There is a method called Jacknife, which does not computemultiple predictions. It computes the residuals as mentioned
above, but it trains one final model on all data. Since it requires you to compute all 𝑁 models to get the residuals, it is
preferred to just use Jacknife+ which is more robust.

An alternative approach that accounts for model variance like the bootstrap method and model bias like the k-fold cross-
validation method is called Jacknife+ [BCRT19]. Jacknife+ carries strong guarantees about accuracy of the confidence
intervals generated, regardless of the underlying data or model. The change now is that we use LOOCV to create an
ensemble of models (although you can subsample down if you do not want N of them) and also compute the models’ test
error on the withheld test data. The final quantile estimates incorporate the variance from the variety of models (model
variance) and also each models’ individual test error (model bias). Specifically, we compute:

𝑅𝑖 = ∣𝑦𝑖 − ̂𝑓( ⃗𝑥𝑖; X ⃗𝑥𝑖)∣ (3.13)

where X ⃗𝑥𝑖 is the dataset to train the 𝑖th model and is the dataset excluding point ( ⃗𝑥𝑖, 𝑦𝑖), ̂𝑓( ⃗𝑥𝑖; X ⃗𝑥𝑖) is the 𝑖th model
evaluated on point ⃗𝑥𝑖, and𝑅𝑖 is the residual of model 𝑖 computed by taking the difference between the label and prediction
on point 𝑖. 𝑅𝑖 encodes how good the 𝑖th model is. We then combine it with the predictions on our new test point ( ⃗𝑥′, 𝑦′)
to make our set for quantiling

𝑞1 = { ̂𝑓( ⃗𝑥′; X ⃗𝑥𝑖) − 𝑅𝑖} (3.14)

𝑞2 = { ̂𝑓( ⃗𝑥′; X ⃗𝑥𝑖) + 𝑅𝑖} (3.15)
where 𝑞 means quantile. The first quantile 𝑞1, with −𝑅𝑖, is how low below the estimate from the 𝑖th model we could
expect to see our prediction based on how the 𝑖th model did on its test point. The second set, with +𝑅𝑖, is how high
below the estimate from the 𝑖th model we could expect to see our prediction based on how the 𝑖th model did on its test
point. To compute our final value, we take the median of ̂𝑓( ⃗𝑥′; X ⃗𝑥𝑖) and report the lower end of the interval as the 5%
quantile of 𝑞1 and the top as the 95% quantile of 𝑞2. You can see that this method combines the ensemble of prediction
models given by bootstrap resampling with the error estimates from LOOCV. Let’s see an example.

residuals = []
predictions = []
for i in range(N):

# make train excluding test point
# we just make a set and remove one element from it
# and then convert back to list
idx = list(set(range(N)) - set([i]))
train = small_soldata.iloc[idx]

(continues on next page)
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x, y = train[feature_names].values, train["Solubility"].values
# compute coefficients
w, *_ = np.linalg.lstsq(x, y)
# compute intercept (b)
b = np.mean(y - np.dot(x, w))
# compute test prediction
predictions.append(np.dot(predict_point[feature_names].values, w) + b)
# now compute residual on withtheld point
yhat = np.dot(small_soldata.iloc[idx][feature_names].values, w) + b
residuals.append(np.abs(yhat - small_soldata.iloc[idx]["Solubility"]))

# create our set of prediction - R_i and prediction + R_i
q1 = [p - ri for p, ri in zip(predictions, residuals)]
q2 = [p + ri for p, ri in zip(predictions, residuals)]
# compute quantiles (lower, median, upper)
qlow = np.quantile(q1, [0.05])[0]
qhigh = np.quantile(q2, [0.95])[0]
# compute avg distance from medianto report +/-
print(

f'prediction = {np.median(predictions):.2f} +/- {(qlow - qhigh) / 2:.2f}, label =
↪{predict_point["Solubility"]:.2f}'

)
print(f"Average test error = {np.median(residuals):.2f}")

prediction = -4.08 +/- -3.28, label = -3.45
Average test error = 1.05

The uncertainty is much higher, which is likely closer to reality. You can see that the residuals add about 1 solubility
(model variance) unit and the variability in the data (label noise) adds about 2 solubility units. Jacknife+ should be the
preferred method when you have small datasets (1-1000) and can train models quickly enough to be able to compute 1000
of them. You can also replace the exhaustive LOOCV with a random process, where you only do a few iterations (like
25) of LOOCV to avoid computing so many models.

3.8 Training Data Distribution

We have come a long ways now. We’re able to compute test error, identify overfitting, understandmodel bias and variance,
and predict uncertainty on unseen data points. One of the implied assumptions so far is that our splitting of data into
training and testing data mimics what it will be like to predict on an unseen data point. More specifically, we assume that
testing data comes from the same probability distribution as our training data. This is true when we’re doing the splitting,
but is often violated when we actually get new data to make predictions with.
There are specific categories for how we have left the training distribution. Covariate shift is when the distribution
of features changes. Covariate is another word for features. An example might be that the molecular weights of your
molecules are larger in your testing data. The relationship between features and labels, 𝑓( ⃗𝑥) remains the same, but the
distribution of features is different. Label shift means that the distribution of labels has changed. Perhaps our training
data was all very soluble molecules but at test time, we’re examining mostly insoluble molecules. Again, our fundamental
relationship 𝑓( ⃗𝑥) that we try to estimate with our model still holds.

Applicability Domain

Applicability domain is a term from cheminformatics describing avoiding covariate shift by trying to stay within the
training data distribution.
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There are two common reasons unseen data can be out of the training data distribution. The first is that you are extrapo-
lating to new regions of chemical space. For example, you have training data of drug activities. You make a model that
can predict activity. What do you do with the model? You obviously find the highest activity drug molecule. However,
this molecule is likely to be unusual and not in your training data. If it was in your training data you would probably al-
ready be done – namely, you already synthesized and found a molecule with very high activity. Thus you will be pushing
your model to regions outside of your training data. Another reason you can be out of training data is that the way you
generated training data is different than how the model is used. For example, perhaps you trained on molecules that do
not contain fluorine. Then you try your model on molecules that contain fluorine. Your features will be different than
what you observed in training. The result of leaving your training data distribution is that your test error increases and
the estimates you provide will be too low.

3.8.1 Leave One Class Out Cross-Validation

Thus understanding and assessing training data distribution is an important task. In general, standardmodels that minimize
a loss are poor at predicting extreme values. We will approach this challenge later with specific methods like black-box
function optimization. For now, be wary of using your models as tools to find extreme values. The second challenge, that
you’re leaving your training data due to how points are generated, can be assessed by computing a more realistic estimate
of model error. Namely, your training data is typically gathered (generated) according to a different process than when
your model is deployed at test time. This is generalization error, sometimes called covariate shift, and we sometimes
wish to approximate its effect by simulating different training and testing distributions. This leads us to leave one class
out cross-validation (LOCOCV).
In LOCOCV, we must first assign a class to each training data point. This is domain specific. It could be based on the
molecule. You could use a clustering method. In our case, our solubility data actually is a combination of five other
datasets so our data is already pre-classified based on who measured the solubility. We will now perform a kind of k-fold
cross-validation, leaving one class out at a time and assessing model error. We’ll compare this to k-fold cross-validation
without classes.

# let's see what the groups (classes) are
unique_classes = soldata["Group"].unique()
print(unique_classes)

['G1' 'G3' 'G5' 'G4' 'G2']

# Leave one class out CV
N = len(soldata)
error = []
error_std = []
for c in unique_classes:

# slice out segments
test = soldata.loc[soldata["Group"] == c]
train = soldata.loc[soldata["Group"] != c]
test_x, test_y = test[feature_names].values, test["Solubility"].values
x, y = train[feature_names].values, train["Solubility"].values
# compute coefficients
w, *_ = np.linalg.lstsq(x, y)
# compute intercept (b)
b = np.mean(y - np.dot(x, w))
# compute test erropr
k_error.append(np.mean((np.dot(test_x, w) + b - test_y) ** 2))
error.append(np.mean(k_error))
error_std.append(np.std(k_error, ddof=1))

print(f"test error = {np.mean(error):.2f}")
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test error = 0.46

We computed above what the 5-fold cross-validation is for this data, 2.66. You can see the LOCOCV test error (0.46) is
similar, which means our different data sources agree well. So perhaps on new unseen data we can expect similar (not so
great) accuracy. There may be other ways to group this data into classes, like based on molecular weight or which atoms
are contained in the molecule. It depends on what you believe to be important. Breaking it down into the constituent
datasets, like we did above, is a reasonable approach because it captures how different research groups would measure
solubility. It is not always obvious or possible to use LOCOCV, but it should be something you consider to assess out
of training data distribution. You can read more about the issue of leaving training data distribution for materials in this
recent article [SBG+20]. You can read more about model selection in general in this recent tutorial article [Ras18].

3.9 Chapter Summary

• Regression is supervised learning where the labels are real numbers. We only considered scalars
• To assess a regressed model, we split data into training and testing and only report error on testing data
• Overfitting causes a mismatch between training and testing error
• Overfitting can be understood via the bias-variance decomposition
• Increasing model complexity can improve fit (reduce bias), but increases model variance and thus test error
• Regularization is a strategy to decrease model variance. L2 is a good first choice
• More rigorous assessment of models can be done via k-fold cross-validation or Jacknife+ when the training data is
small enough that we can train multiple models

• Much of our model assessments depends on the testing data being from the same distribution as the training data
(similar values). This is often not true and can be measured with leave-one-class-out cross-validation.

3.10 Exercises

3.10.1 Overfitting

1. What happens if we have redundant features but no noise? Is it possible to overfit?
2. We said that increasing dataset size reduces model variance. Show this by using k-fold cross-validation on a few

different dataset sizes.

3.10.2 Regularization

1. Implement L1 regularization on the solubility data with 𝑁 = 35 data points. Increase the strength until some
feature coefficients (𝑤𝑖) go to zero. Which ones are they? Why do you think they go to zero first?

2. Repeat 1 with a few different sets of training data. Are your results consistent on which features disappear? Based
on your results, do you think there is meaning to the features which go to zero?

3. Implement the L-infinity (supremum norm) regularization, which returns the absolute value of the maximum ele-
ment only.
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3.10.3 Model Assessment

1. Develop the best linear model for the complete solubility dataset and assess using your best judgment. Justify your
choice of model and assessment.

3.11 Cited References
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CHAPTER

FOUR

CLASSIFICATION

Classification is supervised learning with categorical labels. You are given labeled data consisting of features and labels
{ ⃗𝑥𝑖, ⃗𝑦𝑖}, where ⃗𝑦𝑖 is a vector of binary values indicating class membership. An example of ⃗𝑦𝑖 that indicates membership
of classes “soluble in THF”, “insoluble in water”, “soluble in chloroform” might be:

THF water chloroform
1 0 1

where we’ve indicated that the molecule in soluble in THF and chloroform but not water. As a vector, it is ⃗𝑦 = (1, 0, 1).
This is the general format of classification and can be called multi-label classification because we are attaching three
labels: THF soluble, water insoluble, chloroform soluble. This can be restricted so that each data point belongs to only
one class – called multi-class classification. This might be like assigning visible color. A molecule can only be red or
green or orange, but not multiple colors. Finally, you can only have one class and a label can only belong to the single class
or does not belong to the single class. This is called binary classification and is the most common classification type. If
you’re doing multi-label or multi-class classification, the shape of ⃗𝑦 will be a vector length 𝐾 where 𝐾 indicates number
of classes. In the case of binary classification, the label is a binary value of 1 or 0 where 1 means it is a member of the
class. You can view this as there being two classes: a positive class (𝑦 = 1) and negative class (𝑦 = 0). For example, you
could be predicting if a molecule will kill cells. If the molecule is in the positive class, it kills cells. If it is the negative
class, it is inert and does not kill cells. Depending on your choice of model type, when you predict the labels ( ̂⃗𝑦), your
model could predict probabilities.

Audience & Objectives
This chapter builds on Regression & Model Assessment and a basic knowledge of probability theory – specifically random
variables, normalization, and the metrics section below touches on calibration (empirical agreement of model distribution
with true distribution). You can read my notes or any introductory probability text to learn these topics. After completing
this chapter, you should be able to:

• Distinguish between types of classification
• Set-up and train a classifier with a cross-entropy loss function
• Characterize classifier performance
• Identify and address class imbalance

Note that in multi-class and binary classification ∑ ̂⃗𝑦 = 1, but in multi-label classification this is not the case. Multi-
label classification is like doing 𝐾 instances of binary classification.
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The goal of classification is to find a function that describes the relationship between features and class, ̂𝑓( ⃗𝑥) = ̂𝑦. We’ll
see that this problem can be converted to regression by using probability or distance from a decision boundary. This
means much of what we learned previously can be applied to this classification.
The classic application of classification in structure-activity relationship is in drug discovery, where we want to predict if
a molecule will be active (positive class) as a function of structure. That dates back to the 1970s. Classification is widely
used now in materials and chemistry. Many molecular design problems can be formulated as classification. For example,
you can use it to design new organic photovoltaic materials [SZY+19] or antimicrobial peptides [BJW18].

4.1 Data

The dataset for this lecture was prepared by the MoleculeNet group [WRF+18]. It is a collection of molecules that
succeeded or failed in clinical trials. The development of a new drug can cost well over a $1 billion, so any way to predict
if a molecule will fail during clinical trials is highly valuable. The reason molecules fail in clinical trials is often due to
safety, so even though some of these drugs failed because they were not effective there may be something common to
each of the failed ones that we can learn.
The labels will be the FDA_Approved column which is a 1 or 0 indicating FDA approval status. This is an example of
binary classification.

4.2 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages.

Tip: To install packages, execute this code in a new cell.

!pip install dmol-book

If you find install problems, you can get the latest working versions of packages used in this book here

import pandas as pd
import matplotlib.pyplot as plt
import rdkit, rdkit.Chem, rdkit.Chem.Draw
import numpy as np
import jax.numpy as jnp
import mordred, mordred.descriptors
import jax
import dmol

Now we load the data. This is a little fancy because we’re extracting the data file from a zip archive on a website.

# from zipfile import ZipFile
# from io import BytesIO
# from urllib.request import urlopen

# from web version
# url = 'https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/clintox.csv.gz'
# file = urlopen(url).read()
# file = BytesIO(file)
# document = ZipFile(file)

(continues on next page)
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# toxdata = pd.read_csv(document.open('clintox.csv'))

# local version
toxdata = pd.read_csv(

"https://github.com/whitead/dmol-book/raw/master/data/clintox.csv.gz"
)
toxdata.head()

smiles FDA_APPROVED CT_TOX
0 *C(=O)[C@H](CCCCNC(=O)OCCOC)NC(=O)OCCOC 1 0
1 [C@@H]1([C@@H]([C@@H]([C@H]([C@@H]([C@@H]1Cl)C... 1 0
2 [C@H]([C@@H]([C@@H](C(=O)[O-])O)O)([C@H](C(=O)... 1 0
3 [H]/[NH+]=C(/C1=CC(=O)/C(=C\C=c2ccc(=C([NH3+])... 1 0
4 [H]/[NH+]=C(\N)/c1ccc(cc1)OCCCCCOc2ccc(cc2)/C(... 1 0

4.3 Molecular Descriptors

This time, our data does not come with pre-computed descriptors. We only have the SMILES string, which is a way of
writing a molecule using letters and numbers (a string). We can use rdkit to convert the SMILES string into a molecule,
and then we can use a package called Mordred [MTKT18] to compute a set of descriptors for each molecule. This
package will compute around 1500 descriptors for each molecule.
We’ll start by converting our molecules into rdkit objects and building a calculator to compute the descriptors.

# make object that can compute descriptors
calc = mordred.Calculator(mordred.descriptors, ignore_3D=True)
# make subsample from pandas df
molecules = [rdkit.Chem.MolFromSmiles(smi) for smi in toxdata.smiles]

# view one molecule to make sure things look good.
molecules[0]

Some of our molecules failed to be converted. We’ll have to remove them. We need to remember which ones were deleted
too, since we need to remove the failed molecules from the labels.

# the invalid molecules were None, so we'll just
# use the fact the None is False in Python

(continues on next page)

4.3. Molecular Descriptors 69



Deep Learning for Molecules and Materials

(continued from previous page)

valid_mol_idx = [bool(m) for m in molecules]
valid_mols = [m for m in molecules if m]

features = calc.pandas(valid_mols)

Now we just need to stich everything back together so that our labels are consistent and standardize our features.

labels = toxdata[valid_mol_idx].FDA_APPROVED
features -= features.mean()
features /= features.std()

# we have some nans in features, likely because std was 0
features.dropna(inplace=True, axis=1)

print(f"We have {len(features.columns)} features per molecule")

We have 483 features per molecule

4.4 Classification Models

4.4.1 Linear Perceptron

We are able to predict single values from regression. How can we go from a predicted value to a class? The simplest
answer is to use the same linear regression equation from chapter Regression & Model Assessment ̂𝑓( ⃗𝑥) and assign ̂𝑦 = 1
when ̂𝑓( ⃗𝑥) > 0, ̂𝑦 = 0 otherwise. Our model equation is then:

̂𝑓( ⃗𝑥) = {1 �⃗� ⋅ ⃗𝑥 + 𝑏 ≥ 0
0 otherwise

(4.1)

The term �⃗� ⋅ ⃗𝑥 + 𝑏 is called distance from the decision boundary where the decision boundary is at �⃗� ⋅ ⃗𝑥 + 𝑏 = 0. If it
is large, we are far away from classifying it as 0. If it is small, we are close to classifying it as 0. It can be loosely thought
of as “confidence”.

def perceptron(x, w, b):
v = jnp.dot(x, w) + b
y = jnp.where(v > 0, x=jnp.zeros_like(v), y=jnp.ones_like(v))
return y

This particular model is called a perceptron and is the first neural network for classification. It was invented in 1958 by
Frank Rosenblatt, a psychologist at Cornell University. It was not the first neural network, but is often the first one that
students learn. The perceptron is an example of a hard classifier; it does not predict probability of the class and instead
predicts exactly one class.
Now that we have a model, we must choose a loss function. We haven’t learned about many loss functions yet. We’ve only
seenmean squared error. Let us begin with a related loss called mean absolute error (MAE).MAEmeasures disagreement
between our class and the predicted class. This is like an accuracy – what percentage of the time we’re correct.

𝐿 = 1
𝑁 ∑

𝑖
|𝑦𝑖 − ̂𝑦𝑖| (4.2)
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def loss(y, yhat):
return jnp.mean(jnp.abs(y - yhat))

def loss_wrapper(w, b, x, y):
yhat = perceptron(x, w, b)
return loss(y, yhat)

loss_grad = jax.grad(loss_wrapper, (0, 1))

batch_size = 32
train_N = int(len(labels) * 0.8)

N = len(labels)
batch_idx = range(0, train_N, batch_size)
w = np.random.normal(size=len(features.columns))
b = 0.0

loss_grad = jax.grad(loss_wrapper, (0, 1))

test_x = features[train_N:].values.astype(np.float32)
test_y = labels[train_N:].values

Let’s now try out our gradient to make sure it works

loss_grad(w, b, test_x, test_y)

WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0␣
↪and rerun for more info.)

(DeviceArray([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

(continues on next page)
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0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0.], dtype=float32),

DeviceArray(0., dtype=float32, weak_type=True))

It’s all zeros! Why is that? It’s because our jnp.where statement above is not differentiable, nor are any inequalities
where the result is a constant (1 or 0 in our case). The perceptron actually has a special training procedure that is not
related to its derivatives. One of the motivating reasons that deep learning is popular is that we do not need to construct
a special training process for each model we construct – like the training procedure for the perceptron.
Rather than teach and discuss the special perceptron training procedure, we’ll move to a more modern related classifier
called a softmax binary classifier. This is a tiny change, the softmax binary classifier is:

̂𝑓( ⃗𝑥) = 𝜎 (�⃗� ⋅ ⃗𝑥 + 𝑏) (4.3)

Fig. 4.1: The sigmoid function. Input is any real number and the output is a probability. Positive numbers map to
probabilities greater than 0.5 and negative numbers to probabilities less than 0.5.
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Softmax is the generalization of sigmoid to multiple classes. Although we call our binary classifier a softmax classifier,
it doesn’t use the softmax function.

where 𝜎 is the sigmoid function. The sigmoid has a domain of (−∞, ∞) and outputs a probability (0, 1). The input
to the sigmoid can be viewed as log-odds, called logits for short. Odds are ratios of probability – odds of 1 means the
probability of the class 1 is 0.5 and class 0 is 0.5. Odds of 2 means the probability of class 1 is 0.67 and class 0 is 0.33.
Log-odds is the natural logarithm of that, so that log-odds of 0 means the odds are 1 and the output probability should be
0.5. One definition of the sigmoid is

𝜎(𝑥) = 1
1 + 𝑒−𝑥 (4.4)

however in practice there are some complexities to implementing sigmoids to make sure they’re numerically stable. This
type of binary classifier is sometimes called logistic regression because we’re regressing logits.
In essence, all we’ve done is replacing the inequality of the perceptron with a smooth differentiable version. Just like
previously, a positive number indicated class 1 (FDA approved) but now it’s a continuum of numbers from 0.5 to 1.0.
This is soft classification – we give probabilities of class membership instead of hard assignment. However, our loss
function now needs to be modified as well.
There is a different loss function that works better with classification called cross-entropy. You can experiment with mean
absolute error or mean squared error with classification, but you’ll find they are almost always worse than cross-entropy.
Cross-entropy is a loss function that describes distance between two probability distributions. When minimized, the two
probability distributions are identical. Cross-entropy is a simplification of the Kullback–Leibler divergence which is a
way to measure distance between two probability distributions. Technically it is not a distance since it’s not symmetric
with respect to its arguments. But in practice it is close enough to a distance that we treat it as one.
How is comparing predicted values ̂𝑦 and 𝑦 like comparing two probability distributions? Even though these are both 1s
and 0s in the case of hard classification, they do sum to 1, and so we consider them probability distributions. Cross-entropy
is defined as:

𝐿 = −
𝐾

∑
𝑐

𝑦𝑐 log ̂𝑦𝑐 (4.5)

where 𝑐 indicates which class of the 𝐾 we’re considering, and it’s assumed that ∑𝐾
𝑐 𝑦𝑐 = 1 and ∑𝐾

𝑐 ̂𝑦𝑐 = 1 like
probabilities (and they are positive). In the case of binary classification (only two classes), this becomes:

𝐿 = − [𝑦0 log ̂𝑦0 + 𝑦1 log ̂𝑦1] (4.6)

where 𝑦0 is for the first class and 𝑦1 is for the second class. However, we also know that because these are probabilities
that 𝑦1 = 1 − 𝑦0. We can rewrite to:

𝐿 = − [𝑦0 log ̂𝑦0 + (1 − 𝑦0) log(1 − ̂𝑦0)] (4.7)

Finally, we can drop the indication of the class:

𝐿 = − [𝑦 log ̂𝑦 + (1 − 𝑦) log(1 − ̂𝑦)] (4.8)

The correct way to avoid numerical instability in cross-entropy sigmoid classification is to have your model out-
put the logits and you use a loss function that works on logits instead of probability. For example, tf.nn.
sigmoid_cross_entropy_with_logits.

and this matches our data, where we have a single value for each label indicating if it is a class member. Now we have
features, labels, loss, and a model. Let’s create a batched gradient descent algorithm to train our classifier. Note, one
change we need to do is use the built-in jax jax.nn.sigmoid function to avoid numerical instabilities and also add a
small number to all logs to avoid numerical instabilities.
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def bin_classifier(x, w, b):
v = jnp.dot(x, w) + b
y = jax.nn.sigmoid(v)
return y

def cross_ent(y, yhat):
return jnp.mean(-(y * jnp.log(yhat + 1e-10) + (1 - y) * jnp.log(1 - yhat + 1e-

↪10)))

def loss_wrapper(w, b, x, y):
yhat = bin_classifier(x, w, b)
return cross_ent(y, yhat)

loss_grad = jax.grad(loss_wrapper, (0, 1))
w = np.random.normal(scale=0.01, size=len(features.columns))
b = 1.0

loss_progress = []
test_loss_progress = []
eta = 0.2
for epoch in range(5):

for i in range(len(batch_idx) - 1):
x = features[batch_idx[i] : batch_idx[i + 1]].values.astype(np.float32)
y = labels[batch_idx[i] : batch_idx[i + 1]].values
grad = loss_grad(w, b, x, y)
w -= eta * grad[0]
b -= eta * grad[1]
loss_progress.append(loss_wrapper(w, b, x, y))
test_loss_progress.append(loss_wrapper(w, b, test_x, test_y))

plt.plot(loss_progress, label="Training Loss")
plt.plot(test_loss_progress, label="Testing Loss")

plt.xlabel("Step")
plt.legend()
plt.ylabel("Loss")
plt.show()
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We are making good progress with our classifier, as judged from testing loss. You can run the code longer, but I’ll leave
it at that. We have a reasonably well-trained model.

4.5 Classification Metrics

In regression, we assessed model performance with a parity plot, correlation coefficient, or mean squared error. In clas-
sification, we use slightly different metrics. The first metric is accuracy. Accuracy is the percentage of time that the
predicted label matches the true label. We do not have a hard classifier, so we have to choose how to turn probability into
a specific class. For now, we will choose the class with the highest probability. Let’s see how this looks

def accuracy(y, yhat):
# convert from prob to hard class
hard_yhat = np.where(yhat > 0.5, np.ones_like(yhat), np.zeros_like(yhat))
disagree = np.sum(np.abs(y - yhat))
return 1 - disagree / len(y)

accuracy(test_y, bin_classifier(test_x, w, b))

0.8269480756811194

An accuracy of 0.83 seems quite reasonable! However, consider this model:

def alt_classifier(x):
return np.ones((x.shape[0]))

accuracy(test_y, alt_classifier(test_x))

0.9087837837837838

This model, which always returns 1, has better accuracy than our model. How is this possible?
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Answer
If you examine the data, you’ll see the majority of the molecules passed FDA clinical trials (𝑦 = 1), so that just guessing
1 is a good strategy.

4.5.1 Error Types

Let’s recall what we’re trying to do. We’re trying to predict if a molecule will make it through FDA clinical trials. Our
model can be incorrect in two ways: it predicts a molecule will pass through clinical trials, but it actually fails. This is
called a false positive. The other error is if we predict our drug will not make it through clinical trials, but it actually does.
This is false negative.

False positive are sometimes known as Type I (pronounced type one) and false negatives as Type II false negatives

Our alt_classifier model, which simply reports everything as positive, has no false negative errors. It has many
false positive errors. These two types of errors can be quantified. We’re going to add one complexity – threshold. Our
model provides probabilities which we’re converting into hard class memberships – 1s and 0s. We have been choosing to
just take the most probable class. However, we will now instead choose a threshold for when we report a positive (class
1). The rationale is that although we train our model to minimize cross-entropy, we may want to be more conservative or
aggressive in our classification with the trained model. If we want to minimize false negatives, we can lower the threshold
and report even predictions that have a probability of 30% as positive. Or, if we want to minimize false positives we may
set our threshold so that our model must predict above 90% before we predict a positive.

def error_types(y, yhat, threshold):
hard_yhat = np.where(yhat >= threshold, np.ones_like(yhat), np.zeros_like(yhat))
# predicted 1, actually was 0 -> 1 (bool to remove predicted 0, actually was 1)
fp = np.sum((hard_yhat - y) > 0)
# predicted 0, actually was 1 -> 1 (bool to remove predicted 1, actually was 0)
fn = np.sum((y - hard_yhat) > 0)
return fp, fn

print("Alt Classifier", error_types(test_y, alt_classifier(test_x), 0.5))
print("Trained Classifier", error_types(test_y, bin_classifier(test_x, w, b), 0.5))

Alt Classifier (27, 0)
Trained Classifier (20, 20)

Now we have a better sense of how our model does in comparison. The number of errors is indeed larger for our trained
model, but it has a bit of balance between the two errors. What is more important? In our case, I would argue doing
clinical trials that fail is worse than mistakenly not starting them. That is, false positives are worse than false negatives.
Let’s see if we can tune our threshold value to minimize false positives.

print("Threshold 0.7", error_types(test_y, bin_classifier(test_x, w, b), 0.7))
print("Threshold 0.9", error_types(test_y, bin_classifier(test_x, w, b), 0.9))
print("Threshold 0.95", error_types(test_y, bin_classifier(test_x, w, b), 0.95))
print("Threshold 0.99", error_types(test_y, bin_classifier(test_x, w, b), 0.99))

76 Chapter 4. Classification



Deep Learning for Molecules and Materials

Threshold 0.7 (18, 26)
Threshold 0.9 (9, 82)
Threshold 0.95 (6, 120)
Threshold 0.99 (1, 218)

By adjusting the threshold, we can achieve a balance of error more like what we desire for our model. We’re able to have
1 false positives in fact, at the cost of missing 218 of the molecules. Now are we still predicting positives? Are we actually
going to get some true positives? We can measure that as well

total_pos = np.sum(test_y)
print(

"Total positives:",
total_pos,
"Predicted Positives:",
np.sum(bin_classifier(test_x, w, b) > 0.99),

)

Total positives: 269 Predicted Positives: 52

Yes, our model is actually capable of predicting if molecules will pass FDA clinical trials with as few false positives as
possible (1). A model that is capable of this tuning is an example of a good model. Our other model, that predicts 1s, has
good accuracy but we cannot adjust it or try to better balance type I and type II errors.

4.5.2 Receiver-Operating Characteristic Curve

We can plot threshold, false positive rate, and true positive rate all together on one plot to capture model accuracy and
balance between error type in a Receiver-Operating Characteristic Curve (ROC curve). The x-axis of ROC curve is false
positive rate and the y-axis is true positive rate. Each point on the plot is our model with different thresholds. How do we
choose which thresholds to use? It is the set of unique class probabilities we saw (namely, np.unique). We do need
to add two extremes to this set though: all positive (threshold of 0.0) and all negative (1.0). Recall our alternate/baseline
model of always predicting positive: it can only have a few points on the the ROC curve because it’s unique set of
probabilities is just 1.0. Let’s make one and discuss what we’re seeing.

unique_threshes = np.unique(bin_classifier(test_x, w, b))
fp = []
tp = []
total_pos = np.sum(test_y)
for ut in list(unique_threshes) + [-0.1, 1.01]:

errors = error_types(test_y, bin_classifier(test_x, w, b), ut)
fp.append(errors[0])
tp.append(total_pos - errors[1])

# sort them so can plot as a line
idx = np.argsort(fp)
fpr = np.array(fp)[idx] / (len(test_y) - np.sum(test_y))
tpr = np.array(tp)[idx] / np.sum(test_y)

# now remove duplicate x-values
fpr_nd = []
tpr_nd = []
last = None
for f, t in zip(fpr, tpr):

if last is None or f != last:

(continues on next page)
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(continued from previous page)

last = f
fpr_nd.append(f)
tpr_nd.append(t)

plt.plot(fpr_nd, tpr_nd, "-o", label="Trained Model")
plt.plot([0, 1], [0, 1], label="Naive Classifier")
plt.ylabel("True Positive Rate")
plt.xlabel("False Positive Rate")
plt.legend()
plt.show()

This plot nicely shows how our trained model is actually sensitive to threshold, so that we could choose to more carefully
screen for false negative or false positives. The best curves fall to the top-left of this plot. Our naive classifier is where we
return a fixed percentage of examples randomly as positive or negative. You can plot the area under this curve with an
integration and this is a good way to measure classifier performance and correctly capture the effect of both false negatives
and false positives. The area under the ROC curve is known as theROCAUC score and is preferred to accuracy because
it captures the balance of Type I and II errors.

4.5.3 Other metrics

I will just mention that there are other ways to assess how your model balances the two error types. One major type
is called precision and recall. Precision measures correctness of predicted positives and recall measures number of
predicted positives. This can be a good viewpoint when doing molecular screening – you may want to be very precise
in that your proposed molecules are accurate while sacrificing recall. Recall here meaning you do not return very many
molecules. Models on the left of an ROC curve are precise. Models at the top have good recall. There are also F1 scores,
likelihoods, Matthew’s correlation coefficients, Jaccard index, Brier score, and balanced accuracy which all try to report
one number which balances precision and recall. We will rarely explore these other measures but you should know they
exist.
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Confusion Matrix

A confusion matrix is a table of counts indicating true and predicted classes. They are one of many methods for bi-
nary classification, but really stand-out as good visual assessment for multiclass classification. For example, consider
we are categorizing molecules into three classes: insoluble, weakly soluble, and soluble. We can represent a classifier’s
performance in a table:

truel \predicted insoluble weakly soluble soluble
insoluble 121 8 1
weakly soluble 7 45 18
soluble 11 4 56

The diagonal elements show when the predicted and true labels agree. For example, 121 molecules were actually insoluble
and predicted to be insolbule. We can also read how the classifier failed. One molecule was predicted to be soluble, but
was actually insoluble. 4 molecules were predicted to be weakly soluble, but were actually soluble. This can help us
understand how the classifier is failing.

4.6 Class Imbalance

The reason for this uneven amount of false positives and false negatives is that we have very few negative example –
molecules which failed FDA clinical trials. This also explains why just predicting success has a high accuracy. How can
we address this problem?
The first answer is do nothing. Is this imbalance a problem at all? Perhaps a drug in general will succeed at clinical trials
and thus the imbalance in training data reflects what we expect to see in testing. This is clearly not the case, judging from
the difficult and large expense of creating new drug molecules. However, this should be the first thing you ask yourself.
If you’re creating a classifier to detect lung cancer from X-ray images, probably you will have imbalanced training data
and at test time, when evaluating patients, you’ll also not have 50% of patients having lung cancer. This comes back to
the discussion in the Regression & Model Assessment about training data distribution. If your testing data is within your
training data distribution, then the class imbalance does not need to be explicitly addressed.
The second solution is to somehow weight your training data to appear more like your testing data when you think you
do have label shift. There are two ways to accomplish this. You could “augment” your training data by repeating the
minority class until the ratio of minority to majority examples matches the assumed testing data. There are research
papers written on this topic, with intuitive results[CBHK02]. You can over-sample minority class but that can lead to a
large dataset, so you can also under-sample the majority class. This is a robust approach that is independent to how you
train. It also is typically as good as more sophisticated methods [YIAPLP21].
Another method of weighing data is to modify your loss function to increase the gradient updates applied to minority
examples. This is equivalent to saying there is a difference in loss between a false positive vs a false negative. In our case,
false positive are rarer and also more important in reality. We would rather skip a clinical trial (false negative) rather
than start one and have it fail (false positive). We already tried minimizing false positives by changing the threshold on a
trained model but let’s see how this works during training. We’ll create a weight vector that is high for negative labels so
that if they are misclassified (false positive), there will be a bigger update.

def bin_classifier(x, w, b):
v = jnp.dot(x, w) + b
y = jax.nn.sigmoid(v)
return y

def weighted_cross_ent(y, yhat, yw):
# weights may not be normalized

(continues on next page)
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(continued from previous page)

N = jnp.sum(yw)
# use weighted sum instead
return (

jnp.sum(
-(yw * y * jnp.log(yhat + 1e-10) + yw * (1 - y) * jnp.log(1 - yhat + 1e-

↪10))
)
/ N

)

def loss_wrapper(w, b, x, y, yw):
yhat = bin_classifier(x, w, b)
return weighted_cross_ent(y, yhat, yw)

loss_grad = jax.grad(loss_wrapper, (0, 1))
w2 = np.random.normal(scale=0.01, size=len(features.columns))
b2 = 1.0
weights = np.ones_like(labels)
# make the labels = 0 values be much larger
weights[labels.values == 0] *= 1000
# now make weights be on average 1
# to keep our learning rate/avg update consistent
weights = weights * len(weights) / np.sum(weights)

loss_progress = []
test_loss_progress = []
eta = 0.2
# make epochs larger since this has
# very large steps that converge poorly
for epoch in range(10):

for i in range(len(batch_idx) - 1):
x = features[batch_idx[i] : batch_idx[i + 1]].values.astype(np.float32)
y = labels[batch_idx[i] : batch_idx[i + 1]].values
yw = weights[batch_idx[i] : batch_idx[i + 1]]
grad = loss_grad(w2, b2, x, y, yw)
w2 -= eta * grad[0]
b2 -= eta * grad[1]
loss_progress.append(loss_wrapper(w2, b2, x, y, yw))
test_loss_progress.append(

loss_wrapper(w2, b2, test_x, test_y, np.ones_like(test_y))
)

plt.plot(loss_progress, label="Training Loss")
plt.plot(test_loss_progress, label="Testing Loss")

plt.xlabel("Step")
plt.legend()
plt.ylabel("Loss")
plt.show()

print("Normal Classifier", error_types(test_y, bin_classifier(test_x, w, b), 0.5))
print("Weighted Classifier", error_types(test_y, bin_classifier(test_x, w2, b2), 0.5))
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Normal Classifier (20, 20)
Weighted Classifier (6, 119)

The spikes in loss occur when we see a rare negative example, which are weighted heavily. Compared to the normal
classifier trained above, we have fewer false positives at a threshold of 0.5. However, we also have more false negatives.
We saw above that we could tweak this by changing our threshold. Let’s see how our model looks on an ROC curve to
compare our model trained with weighting with the previous model at all thresholds.

unique_threshes = np.unique(bin_classifier(test_x, w2, b2))
fp = []
tp = []
total_pos = np.sum(test_y)
for ut in list(unique_threshes) + [-0.1, 1.01]:

errors = error_types(test_y, bin_classifier(test_x, w2, b2), ut)
fp.append(errors[0])
tp.append(total_pos - errors[1])

# sort them so can plot as a line
idx = np.argsort(fp)
fpr = np.array(fp)[idx] / (len(test_y) - np.sum(test_y))
tpr = np.array(tp)[idx] / np.sum(test_y)

# now remove duplicate x-values
fpr_nd2 = []
tpr_nd2 = []
last = None
for f, t in zip(fpr, tpr):

if last is None or f != last:
last = f
fpr_nd2.append(f)
tpr_nd2.append(t)

plt.plot(fpr_nd, tpr_nd, "-o", label="Normal Model")
plt.plot(fpr_nd2, tpr_nd2, "-o", label="Weighted Model")

(continues on next page)
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(continued from previous page)

plt.plot([0, 1], [0, 1], label="Naive Classifier")
plt.ylabel("True Positive Rate")
plt.xlabel("False Positive Rate")
plt.legend()
plt.show()

It appears our weighted training actually did not improve model performance, except in a small range between 0.25-0.4
false positive rate. It is even worse in the low false positive rate, which is where we would like to operate. In conclusion,
we can modify the balance of false positive and false negative through modifications to training. However, we can also
modify this after training by affecting the threshold for classification. This post-training procedure gives similar or even
slightly better performance in our example.
This may not always be the case. An overview of methods are available in [HG09] and you can find a more recent
discussion of the effects of reweighting, including when combined with regularization, in Bryrd and Lipton [BL19]. Byrd
and Lipton show that reweighting has little effect unless combined with L2 regularization and batch normalization, perhaps
accounting for the small effect we observed.

4.6.1 Screening: no negative examples

Class imbalance is common in peptide and drug discovery where screening is used to generate data. Screening typically
only contains positive examples, meaning you have literally zero negative examples. This is an active topic of research in
a field of positive-unlabeled learning [SBH+21]
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4.7 Overfitting

The goal of this chapter is to introduce classification. For simplicity, we did not use any of the techniques from the last
chapter, except training/testing splitting. You can and should use techniques like Jacknife+ and cross-validation to assess
overfitting. Also, our descriptor number was very high, a few hundred, and regularization could be helpful for these
models.

4.8 Chapter Summary

• We introduced classification, which is supervised learning with categorical labels. The labels can be single binary
values - representing 2 classes which is binary classification.

• We can compute descriptors for molecules using Python packages and do not require them to be part of our dataset
• Cross-entropy loss should be used for classification tasks
• Classification models (called classifiers) can output distance from decision boundary or, more commonly, proba-
bility of class

• The Perceptron is an early example of a neural network classifier that has a special training procedure
• The sigmoid and soft-max functions convert real numbers into probabilities
• Binary classification error can be false positives or false negatives
• Accuracy does not distinguish these two errors, so receive-operator characteristic (ROC) curves can be used to
assess model performance. Precision and recall are other commonly used measures.

• An imbalance of classes in training data is not necessarily a problem and can be addressed by weighting training
examples

4.9 Exercises

4.9.1 Classification

1. Design your own examples of labels for binary, multi-class, and multi-label classification. For example, “A multi-
class label is the country a person lives in. A label for this is a 225 element vector with one non-zero element
indicating the country the person lives in.”

2. Write out the equations for cross-entropy in multi-class and multi-label settings.

4.9.2 Data

1. Use the dimensional reduction methods from our first chapter to plot the molecules here in 2D. Color the points
based on their labels. Do you see any patterns?

2. Now, use clustering to color the molecules. Use an elbow plot to choose your cluster number.
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4.9.3 Assessment

1. Repeat the model fitting with L1 and L2 regularization and plot them on a ROC curve. What effect does regular-
ization have on these? Choose a strength of 0.1.

2. Could you use leave-one-class-out cross-validation in binary classification? Why or why not?
3. We said that class imbalance alone has little effect on model training, as long as the testing distribution matches the

training distribution. However, can you make an argument using the bias-variance decomposition about why this
may not be true with small dataset size?

4. Compute the area under the curve of an ROC curve using numerical trapezoidal integration.

4.9.4 Complete Model

Do your best to create a binary-classifier for this dataset with regularization and any other methods we learned from this
chapter the previous ones. What is the best area under the curve you can achieve?

4.10 Cited References
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CHAPTER

FIVE

KERNEL LEARNING

Kernel learning is a way to transform features in either classification or regression problems. Recall in regression, we have
the following model equation:

̂𝑦 = �⃗� ⃗𝑥 + 𝑏 (5.1)
where ⃗𝑥 is our feature vector of dimension 𝐷. In kernel learning, we transform our feature vector from dimension 𝐷
features to distances to training data points of dimension 𝑁 , where 𝑁 is the number of training data points:

̂𝑦 =
𝑁

∑
𝑖

𝑤𝑖 ⟨ ⃗𝑥, ⃗𝑥𝑖⟩ + 𝑏 (5.2)

where ⟨⋅⟩ is distance between two feature vectors and ⃗𝑥𝑖 is the 𝑖th training data point. ⃗𝑥 is the function argument whereas
⃗𝑥𝑖 are known values.

Audience & Objectives
This chapter builds on Regression & Model Assessment and Classification. After completing this chapter, you should be
able to

• Distinguish between primal and dual form
• Choose when kernel learning could be beneficial
• Understand the principles of training curves and the connection between training size and feature number

Although we will use the word distance, the ⟨⋅⟩ function is actually an inner product which is more flexible than a
distance.

One of the consequences of this transformation is that our training weight vector, �⃗�, no longer depends on the number
of features. Instead the number of weights depends on the number of training data points. This is the reason we
use kernel learning. You might have few training data points but large feature vectors (𝑁 < 𝐷). By using the kernel
formulation, you’ll reduce the number of weights. It might also be that your feature space is hard to model with a linear
equation, but when you view it as distances from training data it becomes linear (often 𝑁 > 𝐷). Finally, it could be that
your feature vector is infinite dimensional (i.e., it is a function not a vector) or for some reason you cannot compute it. In
kernel learning, you only need to define your kernel function ⟨⋅⟩ and never explicitly work with the feature vector.
The distance function is called a kernel function ⟨⋅⟩. A kernel function is a binary function (takes two arguments) that
outputs a scalar and has the following properties:

1. Positive: ⟨𝑥, 𝑥′⟩ ≥ 0
2. Symmetric: ⟨𝑥, 𝑥′⟩ = ⟨𝑥′, 𝑥⟩
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3. Point-separating: ⟨𝑥, 𝑥′⟩ = 0 if and only if 𝑥 = 𝑥′

The classic kernel function example is 𝑙2 norm (Euclidean distance): ⟨ ⃗𝑥, ⃗𝑥′⟩ = √∑𝐷
𝑖 (𝑥𝑖 − 𝑥′

𝑖)2. Some of the most
interesting applications of kernel learning though are when 𝑥 is not a vector, but a function or some other structured
object.

Primal & Dual Form
Dual Form is what some call our model equation when it uses the kernels: ̂𝑦 = ∑𝑁

𝑖 𝑤𝑖 ⟨ ⃗𝑥, ⃗𝑥𝑖⟩ + 𝑏. To distinguish from
the dual form, you can also refer to the usual model equation as the Primal Form ̂𝑦 = �⃗� ⃗𝑥 + 𝑏. It also sounds cool.

Kernel learning is a widely-used approach for learning potential energy functions and force fields in molecular modeling
[RTMullerVL12, SSAB20].

5.1 Solubility Example

Let’s revisit the solubility AqSolDB[SKE19] dataset from Regression & Model Assessment. Recall it has about 10,000
unique compounds with measured solubility in water (label) and 17 molecular descriptors (features).

5.2 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages.

Tip: To install packages, execute this code in a new cell.

!pip install dmol-book

If you find install problems, you can get the latest working versions of packages used in this book here

As usual, the code below sets-up our imports.

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import jax.numpy as jnp
import jax
import dmol

# soldata = pd.read_csv('https://dataverse.harvard.edu/api/access/datafile/3407241?
↪format=original&gbrecs=true')

soldata = pd.read_csv(
"https://github.com/whitead/dmol-book/raw/master/data/curated-solubility-dataset.

↪csv"
)
features_start_at = list(soldata.columns).index("MolWt")
feature_names = soldata.columns[features_start_at:]
np.random.seed(0)

# standardize the features

(continues on next page)
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(continued from previous page)

soldata[feature_names] -= soldata[feature_names].mean()
soldata[feature_names] /= soldata[feature_names].std()

5.3 Kernel Definition

We’ll start by creating our kernel function. Our kernel function does not need to be differentiable. In contrast to the
functions we see in deep learning, we can use sophisticated and non-differentiable functions in kernel learning. For
example, you could use a two-component molecular dynamics simulation to compute the kernel between two molecules.
We’ll still implement our kernel functions in JAX for this example because it is efficient and consistent. Remember our
kernel should take two feature vectors and return a scalar. In our example, we will simply use the 𝑙2 norm. I will add one
small twist though: dividing by the dimension. This makes our kernel output magnitude is independent of the number of
dimensions of 𝑥.

def kernel(x1, x2):
return jnp.sqrt(jnp.mean((x1 - x2) ** 2))

5.4 Model Definition

Sincewe’re doing linear regression, you can compute the fit coefficients by just doingmatrix algebra. We’ll still approach
this problem with gradient descent even though there are more efficient model-specific procedures.

Now we define our regression model equation in the dual form. Remember that our function must always take the training
data in to compute the distance to a new given point. We will use the batch feature of JAX to compute all the kernels
simultaneously for our new point.

def model(x, train_x, w, b):
# make vectorized version of kernel
vkernel = jax.vmap(kernel, in_axes=(None, 0), out_axes=0)
# compute kernel with all training data
s = vkernel(x, train_x)
# dual form
yhat = jnp.dot(s, w) + b
return yhat

# make batched version that can handle multiple xs
batch_model = jax.vmap(model, in_axes=(0, None, None, None), out_axes=0)
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5.5 Training

We now have trainable weights and a model equation. To begin training, we need to define a loss function and compute
its gradient. We’ll use mean squared error as usual for the loss function. We can use regularization, as we saw previously,
but will skip it for now.

@jax.jit
def loss(w, b, train_x, x, y):

return jnp.mean((batch_model(x, train_x, w, b) - y) ** 2)

loss_grad = jax.grad(loss, (0, 1))

# Get 80/20 split
N = len(soldata)
train = soldata[: int(N * 0.8)]
test = soldata[int(N * 0.8) :]

# convert from pandas dataframe to numpy arrays
train_x = train[feature_names].values
train_y = train["Solubility"].values
test_x = test[feature_names].values
test_y = test["Solubility"].values

We’ve defined our loss and split our data into training/testing. Now we will set-up the training parameters, including
breaking up our training data into batches. An epoch is one iteration through the whole dataset.

eta = 1e-5
batch_size = 32
epochs = 10

# reshape into batches
batch_num = train_x.shape[0] // batch_size
# first truncate data so it's whole nubmer of batches
trunc = batch_num * batch_size
train_x = train_x[:trunc]
train_y = train_y[:trunc]
# split into batches
x_batches = train_x.reshape(-1, batch_size, train_x.shape[-1])
y_batches = train_y.reshape(-1, batch_size)

# make trainable parameters
# w = np.random.normal(scale = 1e-30, size=train_x.shape[0])
w = np.zeros(train_x.shape[0])
b = np.mean(train_y) # just set to mean, since it's a good first guess

You may notice our learning rate, 𝜂, is unusually low at 10−5. It’s because each training data point, for which we have
about 8,000, contributes to the final ̂𝑦. Thus if we take a large training step, it is can create very big changes to ̂𝑦.

loss_progress = []
test_loss_progress = []

for _ in range(epochs):

(continues on next page)
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(continued from previous page)

# go in random order
for i in np.random.randint(0, batch_num - 1, size=batch_num):

# update step
x = x_batches[i]
y = y_batches[i]
loss_progress.append(loss(w, b, train_x, x, y))
test_loss_progress.append(loss(w, b, train_x, test_x, test_y))
grad = loss_grad(w, b, train_x, x, y)
w -= eta * grad[0]
b -= eta * grad[1]

plt.plot(loss_progress, label="Training Loss")
plt.plot(test_loss_progress, label="Testing Loss")

plt.xlabel("Step")
plt.yscale("log")
plt.legend()
plt.ylabel("Loss")
plt.show()

WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0␣
↪and rerun for more info.)

One small change from previous training loops is that we randomized our batches in the for loop.

yhat = batch_model(test_x, train_x, w, b)
plt.plot(test_y, test_y, ":", linewidth=0.2)
plt.plot(test_y, yhat, "o")
plt.text(min(y) + 1, max(y) - 2, f"correlation = {np.corrcoef(test_y, yhat)[0,1]:.3f}

↪")
plt.text(min(y) + 1, max(y) - 3, f"loss = {np.sqrt(np.mean((test_y - yhat)**2)):.3f}")
plt.title("Testing Data")
plt.show()
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We can see our results show underfitting. As usual, I want to make this code execute fast so I have not done many epochs.
You can increase the epoch number and watch the loss and correlation improve over time.

5.6 Regularization

You’ll notice that our trainable parameter number, by design, is equal to the number training data points. If we were to use
a direct computation of the fit coefficients with a pseudo-inverse, we could run into problems because of this. Thus, most
people add an additional regularization term to both make matrix algebra solutions tractable and because it seems wise
with the large number of trainable parameters. Just like we saw in linear regression, L1 regression is known as Lasso
Ridge Regression and L2 is known as Kernel Ridge Regression. Remember that L1 zeros-out specific parameters
which was useful for interpreting the importance of features in linear regression. However, in the kernel setting this
would only zero-out specific training data points and thus provides no real insight(usually, see Explaining Predictions).
Kernel ridge regression is thus more popular in the kernel setting.

5.7 Training Curves

The bias-variance trade-off from Regression & Model Assessment showed how increasing model complexity could reduce
model bias (more expressive and able to fit data better) at the cost of increased model variance (more sensitive to training
data choice and amount). The model complexity was controlled by adjusting feature number. In kernel learning, we
cannot control feature number because it is always equal to the number of training data points. Thus, we can only control
hyperparameters like the choice of kernel, regularization, learning rate, etc. To assess these effects, we usually do not only
compute test loss because that is highly-connected to the amount of training data you have. More training data means
more sophisticated models and thus lower loss. So it is common in kernel learning especially to show how the test-loss
changes a function of training data amount. These are presented as log-log plots due to the large magnitude changes in
these. These are called training curves (or sometimes learning curves). Training curves can be applied broadly in ML
and deep learning, but you’ll most often see them in kernel learning.
Let’s revisit our solubility model and compare L1 and L2 regularization with a training curve. Note that this code is very
slow because we must compute 𝑀 models, where 𝑀 is the number of points we want on our training curve. To keep
things efficient for this textbook, I’ll use few points on the curve.
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First, we’ll turn our training procedure into a function.

def fit_model(loss, npoints, eta=1e-6, batch_size=16, epochs=25):

sample_idx = np.random.choice(
np.arange(train_x.shape[0]), replace=False, size=npoints

)
sample_x = train_x[sample_idx, :]
sample_y = train_y[sample_idx]

# reshape into batches
batch_num = npoints // batch_size
# first truncate data so it's whole nubmer of batches
trunc = batch_num * batch_size
sample_x = sample_x[:trunc]
sample_y = sample_y[:trunc]
# split into batches
x_batches = sample_x.reshape(-1, batch_size, sample_x.shape[-1])
y_batches = sample_y.reshape(-1, batch_size)

# get loss grad
loss_grad = jax.grad(loss, (0, 1))

# make trainable parameters
# w = np.random.normal(scale = 1e-30, size=train_x.shape[0])
w = np.zeros(sample_x.shape[0])
b = np.mean(sample_y) # just set to mean, since it's a good first guess
for _ in range(epochs):

# go in random order
for i in np.random.randint(0, batch_num - 1, size=batch_num):

# update step
x = x_batches[i]
y = y_batches[i]
grad = loss_grad(w, b, sample_x, x, y)
w -= eta * grad[0]
b -= eta * grad[1]

return loss(w, b, sample_x, test_x, test_y)

# test it out
fit_model(loss, 256)

DeviceArray(3.8454313, dtype=float32)

Now we’ll create L1 and L2 version of our loss. We must choose the strength of the regularization. Since our weights
are less than 1, I’ll choose much stronger regularization for the L2. These are hyperparameters though and you can adjust
them to improve your fit.

@jax.jit
def loss_l1(w, b, train_x, x, y):

return jnp.mean((batch_model(x, train_x, w, b) - y) ** 2) + 1e-2 * jnp.sum(
jnp.abs(w)

)

@jax.jit

(continues on next page)
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def loss_l2(w, b, train_x, x, y):
return jnp.mean((batch_model(x, train_x, w, b) - y) ** 2) + 1e2 * jnp.sum(w**2)

And now we can generate the points necessary for our curves!

nvalues = [32, 256, 512, 1024, 2048, 1024 * 5]

nor_losses = [fit_model(loss, n) for n in nvalues]
l1_losses = [fit_model(loss_l1, n) for n in nvalues]
l2_losses = [fit_model(loss_l2, n) for n in nvalues]

plt.plot(nvalues, nor_losses, label="No Regularization")
plt.plot(nvalues, l1_losses, label="L1 Regularization")
plt.plot(nvalues, l2_losses, label="L2 Regularization")
plt.legend()
plt.xlabel("Training Data Amount")
plt.ylabel("Test Loss")
plt.gca().set_yscale("log")
plt.gca().set_xscale("log")

Finally, we see our training curves showing the different approaches. Regularization has some effect on final loss on the
test data. It is hard to say if L1 and L2 are simply worse, or if I need to tune the regularization strength more. Nevertheless,
this plot shows you how we typically evaluated kernel learning methods.
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5.8 Exercises

1. Compute the analytical gradient for the dual form regression equation and use it to describe why the kernel function
does not need to be differentiable.

2. Is it faster or slower to do training with kernel learning? Explain
3. Is it faster or slower to do inference with kernel learning? Explain
4. How can we modify Equation 4.2 to do classification?
5. Do the weight values give relative importance of training examples regardless of kernel?
6. Create a training curve from the above example showing 5 different L1 regularization strengths. Why might regu-

larization not matter here?

5.9 Chapter Summary

• In this section we introduced kernel learning, which is amethod to transform features into distance between samples.
• A kernel function takes two arguments and outputs a scalar. A kernel function must have three properties: positive,
symmetric, and point-separating.

• The distance function (inner product) is a kernel function.
• Kernel functions do not need to be differentiable.
• Kernel learning is appropriate when you would like to use features that can only be specified as a binary kernel
function.

• The number of trainable parameters in a kernel model is proportional to number of training points, not dimension
of features.

5.10 Cited References
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CHAPTER

SIX

DEEP LEARNING OVERVIEW

Deep learning is a category of machine learning. Machine learning is a category of artificial intelligence. Deep
learning is the use of neural networks to do machine learning, like classify and regress data. This chapter provides an
overview and we will dive further into these topics in later chapters.

Audience & Objectives
This chapter builds on Regression & Model Assessment and Introduction to Machine Learning. After completing this
chapter, you should be able to

• Define deep learning
• Define a neural network
• Connect the previous regression principles to neural networks

There are many good resources on deep learning to supplement these chapters. The goal of this book is to present
a chemistry and materials-first introduction to deep learning. These other resources can help provide better depth in
certain topics and cover topics we do not even cover, because I do not find them relevant to deep learning (e.g., image
processing). I found the introduction the from Ian Goodfellow’s book to be a good intro. If you’re more visually oriented,
Grant Sanderson has made a short video series specifically about neural networks that give an applied introduction to
the topic. DeepMind has a high-level video showing what can be accomplished with deep learning & AI. When people
write “deep learning is a powerful tool” in their research papers, they typically cite this Nature paper by Yann LeCun,
Yoshua Bengio, and Geoffery Hinton. Zhang, Lipton, Li, and Smola have written a practical and example-driven online
book that gives each example in Tensorflow, PyTorch, and MXNet. You can find many chemistry-specific examples and
information about deep learning in chemistry via the excellent DeepChem project. Finally, some deep learning package
provide a short introduction to deep learning via a tutorial of its API: Keras, PyTorch.
The main advice I would give to beginners in deep learning are to focus less on the neurological inspired language (i.e.,
connections between neurons), and instead view deep learning as a series of linear algebra operations where many of
the matrices are filled with adjustable parameters. Of course nonlinear functions (activations) are used to join the linear
algebra operations, but deep learning is essentially linear algebra operations specified via a “computation network” (aka
computation graph) that vaguely looks like neurons connected in a brain.

nonlinearity
A function 𝑓( ⃗𝑥) is linear if two conditions hold:

𝑓( ⃗𝑥 + ⃗𝑦) = 𝑓( ⃗𝑥) + 𝑓( ⃗𝑦) (6.1)

for all ⃗𝑥 and ⃗𝑦. And
𝑓(𝑠 ⃗𝑥) = 𝑠𝑓(𝑥) (6.2)

where 𝑠 is a scalar. A function is nonlinear if these conditions do not hold for some ⃗𝑥.
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6.1 What is a neural network?

The deep in deep learning means we have many layers in our neural networks. What is a neural network? Without loss
of generality, we can view neural networks as 2 components: (1) a nonlinear function 𝑔(⋅) which operates on our input
features X and outputs a new set of features H = 𝑔(X) and (2) a linear model like we saw in our Introduction to Machine
Learning. Our model equation for deep learning regression is:

̂𝑦 = �⃗�𝑔( ⃗𝑥) + 𝑏 (6.3)

One of the main discussion points in our ML chapters was how arcane and difficult it is to choose features. Here, we have
replaced our features with a set of trainable features 𝑔( ⃗𝑥) and then use the same linear model as before. So how do we
design 𝑔( ⃗𝑥)? That is the deep learning part. 𝑔( ⃗𝑥) is a differentiable function composed of layers, which are themselves
differentiable functions each with trainable weights (free variables). Deep learning is a mature field and there is a set of
standard layers, each with a different purpose. For example, convolution layers look at a fixed neighborhood around each
element of an input tensor. Dropout layers randomly inactivate inputs as a form of regularization. The most commonly
used and basic layer is the dense or fully-connected layer.

Dense means each input element affects each output element. At one point, sparse layers were popular and had a nice
analogy with how a brain is connected. However, dense layers do not require deciding which input/output connections
to make and sparse layers are very rare now (except incidentally sparse layers, like convolutions).

A dense layer is defined by two things: the desired output feature shape and the activation. The equation is:

ℎ⃗ = 𝜎(W ⃗𝑥 + ⃗𝑏) (6.4)

whereW is a trainable𝐷×𝐹 matrix, where𝐷 is the input vector ( ⃗𝑥) dimension and 𝐹 is the output vector (ℎ⃗) dimension,
⃗𝑏 is a trainable 𝐹 dimensional vector, and 𝜎(⋅) is the activation function. 𝐹 , the number of output features, is an example
of a hyperparameter: it is not trainable but is a problem dependent choice. 𝜎(⋅) is another hyperparameter. In principle,
any differentiable function that has a domain of (−∞, ∞) can be used for activation. However, the function should be
nonlinear. If it were linear, then stacking multiple dense layers would be equivalent to one-big matrix multiplication and
we’d be back at linear regression. So activations should be nonlinear. Beyond nonlinearity, we typically want activations
that can “turn on” and “off”. That is, they have an output value of zero for some domain of input values. Typically, the
activation is zero, or close to, for negative inputs.
The most simple activation function that has these two properties is the rectified linear unit (ReLU), which is

𝜎(𝑥) = { 𝑥 𝑥 > 0
0 otherwise

6.1.1 Universal Approximation Theorem

One of the reasons that neural networks are a good choice at approximating unknown functions (𝑓( ⃗𝑥)) is that a neural
network can approximate any function with a large enough network depth (number of layers) or width (size of hidden
layers). There are many variations of this theorem – infinitely wide or infinitely deep neural networks. For example, any
1 dimensional function can be approximated by a depth 5 neural network with ReLU activation functions with infinitely
wide layers (infinite hidden dimension) [LPW+17]. The universal approximation theorem shows that neural networks
are, in the limit of large depth or width, expressive enough to fit any function.
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6.1.2 Frameworks

Deep learning has lots of “gotchas” – easy to make mistakes that make it difficult to implement things yourself. This is
especially true with numerical stability, which only reveals itself when your model fails to learn. We will move to a bit
of a more abstract software framework than JAX for some examples. We’ll use Keras, which is one of many possible
choices for deep learning frameworks.

6.1.3 Discussion

When it comes to introducing deep learning, I will be as terse as possible. There are good learning resources out there.
You should use some of the reading above and tutorials put out by Keras (or PyTorch) to get familiar with the concepts
of neural networks and learning.

6.2 Revisiting Solubility Model

We’ll see our first example of deep learning by revisiting the solubility dataset with a two layer dense neural network.

6.3 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages.

Tip: To install packages, execute this code in a new cell.

!pip install dmol-book

If you find install problems, you can get the latest working versions of packages used in this book here

import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import dmol

6.3.1 Load Data

We download the data and load it into a Pandas data frame and then standardize our features as before.

# soldata = pd.read_csv('https://dataverse.harvard.edu/api/access/datafile/3407241?
↪format=original&gbrecs=true')

# had to rehost because dataverse isn't reliable
soldata = pd.read_csv(

"https://github.com/whitead/dmol-book/raw/master/data/curated-solubility-dataset.
↪csv"

)
features_start_at = list(soldata.columns).index("MolWt")
feature_names = soldata.columns[features_start_at:]
# standardize the features

(continues on next page)
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soldata[feature_names] -= soldata[feature_names].mean()
soldata[feature_names] /= soldata[feature_names].std()

6.4 Prepare Data for Keras

The deep learning libraries simplify many common tasks, like splitting data and building layers. This code below builds
our dataset from numpy arrays.

full_data = tf.data.Dataset.from_tensor_slices(
(soldata[feature_names].values, soldata["Solubility"].values)

)
N = len(soldata)
test_N = int(0.1 * N)
test_data = full_data.take(test_N).batch(16)
train_data = full_data.skip(test_N).batch(16)

Notice that we used skip and take (See tf.data.Dataset) to split our dataset into two pieces and create batches
of data.

6.5 Neural Network

Now we build our neural network model. In this case, our 𝑔( ⃗𝑥) = 𝜎 (W0 ⃗𝑥 + ⃗𝑏). We will call the function 𝑔( ⃗𝑥) a hidden
layer. This is because we do not observe its output. Remember, the solubility will be 𝑦 = �⃗�𝑔( ⃗𝑥) + 𝑏. We’ll choose our
activation, 𝜎(⋅), to be tanh and the output dimension of the hidden-layer to be 32. The choice of tanh is empirical —
there are many choices of nonlinearity and they are typically chosen based on efficiency and empirical accuracy. You can
read more about this Keras API here, however you should be able to understand the process from the function names and
comments.

# our hidden layer
# We only need to define the output dimension - 32.
hidden_layer = tf.keras.layers.Dense(32, activation="tanh")
# Last layer - which we want to output one number
# the predicted solubility.
output_layer = tf.keras.layers.Dense(1)

# Now we put the layers into a sequential model
model = tf.keras.Sequential()
model.add(hidden_layer)
model.add(output_layer)

# our model is complete

# Try out our model on first few datapoints
model(soldata[feature_names].values[:3])

<tf.Tensor: shape=(3, 1), dtype=float32, numpy=
array([[ 1.0637524 ],

[-0.02571592],
[ 0.31304714]], dtype=float32)>
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Jax vs Keras

We could have implemented this in Jax, but it would have been a few more lines of code. To keep the focus high level,
I’ve used Keras for this chapter.

We can see our model predicting the solubility for 3 molecules above. There may be a warning about how our Pandas
data is using float64 (double precision floating point numbers) but our model is using float32 (single precision), which
doesn’t matter that much. It warns us because we are technically throwing out a little bit of precision, but our solubility
has much more variance than the difference between 32 and 64 bit precision floating point numbers. We can remove this
warning by modifying the last line to be:

model(soldata[feature_names].values[:3].astype(float))

At this point, we’ve defined how our model structure should work and it can be called on data. Now we need to train it!
We prepare the model for training by calling model.compile, which is where we define our optimization (typically a
flavor of stochastic gradient descent) and loss

model.compile(optimizer="SGD", loss="mean_squared_error")

Look back to the amount of work it took to previously set-up loss and optimization process! Now we can train our model

model.fit(train_data, epochs=50)

That was quite simple!

An epoch is one iteration over the whole dataset, regardless of batch size.

For reference, we got a loss about as low as 3 in our previous work. It was also much faster, thanks to the optimizations.
Now let’s see how our model did on the test data

# get model predictions on test data and get labels
# squeeze to remove extra dimensions
yhat = np.squeeze(model.predict(test_data))
test_y = soldata["Solubility"].values[:test_N]

plt.plot(test_y, yhat, ".")
plt.plot(test_y, test_y, "-")
plt.xlabel("Measured Solubility $y$")
plt.ylabel("Predicted Solubility $\hat{y}$")
plt.text(

min(test_y) + 1,
max(test_y) - 2,
f"correlation = {np.corrcoef(test_y, yhat)[0,1]:.3f}",

)
plt.text(

min(test_y) + 1,
max(test_y) - 3,
f"loss = {np.sqrt(np.mean((test_y - yhat)**2)):.3f}",

)
plt.show()
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This performance is better than our simple linear model.

6.6 Exercises

1. Make a plot of the ReLU function. Prove it is nonlinear.
2. Try increasing the number of layers in the neural network. Discuss what you see in context of the bias-variance

trade off
3. Show that a neural network would be equivalent to linear regression if 𝜎(⋅) was the identity function
4. What are the advantages and disadvantages of using deep learning instead of nonlinear regression for fitting data?

When might you choose nonlinear regression over deep learning?

6.7 Chapter Summary

• Deep learning is a category of machine learning that utilizes neural networks for classification and regression of
data.

• Neural networks are a series of operations with matrices of adjustable parameters.
• A neural network transforms input features into a new set of features that can be subsequently used for regression
or classification.

• The most common layer is the dense layer. Each input element affects each output element. It is defined by the
desired output feature shape and the activation function.

• With enough layers or wide enough hidden layers, neural networks can approximate unknown functions.
• Hidden layers are called such because we do not observe the output from one.
• Using libraries such as TensorFlow, it becomes easy to split data into training and testing, but also to build layers
in the neural network.

• Building a neural network allows us to predict various properties of molecules, such as solubility.
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CHAPTER

SEVEN

STANDARD LAYERS

We will now see an overview of the enormous diversity in deep learning layers. This survey is necessarily limited to
standard layers and we begin without considering the key layers that enable deep learning of molecules and materials.
Almost all the layers listed below came out of a model for a specific task and were not thought-up independently. That
means that some of the layers are suited to specific tasks and often the nomenclature around that layer is targeted towards
a specific kinds of data.

Audience & Objectives
This chapter builds on the overview fromDeep Learning Overview and Regression &Model Assessment. After completing
this chapter, you should be able to:

• Construct a neural network with various layers
• Understand how layers change shapes
• Recognize hyperparameters in a neural network
• Split data into train, test, and validation
• Regularize to prevent overfitting

The most common type is image data and we first begin with an overview of how image features are represented. Gen-
erally, an image is a rank 3 tensor with shape (𝐻, 𝑊, 𝐶) where 𝐻 is the height of the image, 𝑊 is the width, and 𝐶
is the number of channels (typically 3 – red, green, blue). Since all training is in batches, the input features shape will
be (𝐵, 𝐻, 𝑊, 𝐶). Often layers will discuss input as having a batch axis, some number of shape axes, and then finally a
channel axis. The layers will then operate on perhaps only the channels or only the shape dimensions. The layers are all
quite flexible, so this is not a limitation in practice, but it’s important to know when reading about layer types. Often the
documentation or literature will mention batch number or channels and this is typically the first and last axes of a tensor,
respectively.

Note: Everything and nothing is batched in deep learning. Practically, data is always batched. Even if your data is not
batched, the first axis input to a neural network is of unspecified dimension and called the batch axis. Many frameworks
make this implicit, meaning if you say the output from one layer is shape (4, 5), it will be (𝐵, 4, 5) when you actually
inspect data. Or, for example in JAX, you can write your code without batching and make it batched through a function
transform. So, all data is batched but often the math, frameworks, and documentation make it seem as if there is no batch
axis.

An example of what a neural network looks like is shown in Fig. 7.1. In this case, its input is a 128x128 images with 3
channels (red, green, blue) and it outputs is a vector of probabilities of length 128 that indicate the class of the images.
In other words, it takes in an image and gives it a probability of 128 possible labels like “cat” or “vase” or “crane”. The
words annotating the figure indicate the different layer types we’ll learn about below.
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Fig. 7.1: A typical neural network architecture is composed of multiple layers. This network is used to classify images.

7.1 Hyperparameters

We saw from the Full connected (FC)/Dense layer that we have to choose if we use bias, the activation, and the output
shape. As we learn about more complex layers, there will be more choices. These choices begin to accumulate and
in a neural network you may have billions of possible combinations of them. These choices about shape, activation,
initialization, and other layer arguments are called hyperparameters. They are parameters in the sense that they can
be tuned, but they are not trained on our data so we call them hyperparameters to distinguish them from the “regular”
parameters like value of weights and biases in the layers. The name is inherited from Bayesian statistics.
Choosing these hyperparameters is difficult and we typically rely on the body of existing literature to understand ranges
of reasonable parameters. In deep learning, we usually are in a regime of hyperparameters which yield many trainable
parameters (deep networks) and thus our models can represent any function. Our models are expressive. However, op-
timizing hyperparameters makes training faster and/or require less data. For example, papers have shown that carefully
choosing the initial value of weights can be more effective than complex architecture [GB10]. Another example found
that convolutions, which are thought to be the most important layer for image recognition, are not necessary if hyperpa-
rameters are chosen correctly for dense neural networks[CirecsanMGS10]. This is now changing, with options for tuning
hyperparameters, but the current state-of-the art is to take hyperparameters from previous work as a starting guess and
change a little if you believe it is needed.

7.1.1 Validation

The number of hyperparameters is high enough that overfitting can actually occur by choosing hyperparameters that
minimize error on the test set. This is surprising because we don’t explicitly train hyperparameters. Nevertheless, you
will find in your own work that if you use the test data extensively in hyperparameter tuning and for assessing overfitting
of the regular training parameters, your performance will be overfit to the testing data. To combat this, we split our data
three ways in deep learning:

1. Training data: used for trainable parameters.
2. Validation data: used to choose hyperparameters or measure overfitting of training data
3. Test data: data not used for anything except final reported error

To clean-up our nomenclature here, we use the word generalization error to refer to performance on a hypothetical

106 Chapter 7. Standard Layers



Deep Learning for Molecules and Materials

infinite stream of unseen data. So regardless of if you split three-ways or use other approaches, generalization error
means error on unseen data.

You can replace this three-way split with cross-validation methods from previously, but remember that those require
training 𝑘-times. Thus you rarely see k-fold cross-validation and evenmore rarely see leave-one-out or Jacknife because
of how computatioanlly expensive it is to train models.

7.1.2 Tuning

So how do you tune hyperparameters? The main answer is by hand, but this is an active area of research. Hyperpa-
rameters are continuous (e.g., regularization strength), categorical (e.g., which activation), and discrete variables (e.g.,
number of layers). One category of ways to tune hyperparameters is a topic called meta-learning[FAL17], which aims to
learn hyperparameters by looking at multiple related datasets. Another area is auto-machine learning (auto-ML)[ZL17],
where optimization strategies that do not require derivatives can tune hyperparameters. An important category of opti-
mization related to hyperparameter tuning ismulti-armed bandit optimization where we explicitly treat the fact that we
have a finite amount of computational resources for tuning hyperparameters[LJD+18]. A comprehensive overview on
hyperparameters and tuning techniques can be found in Hyperparameter Tuning.

7.2 Common Layers

Now that we have some understanding of hyperparameters and their role, let’s now survey the common types of layers.

7.2.1 Convolutions

You can find a more thorough overview of convolutions here and here with more visuals. Here is a nice video on this.
Convolutions are the most commonly used input layer when dealing with images or other data defined on a regular grid.
In chemistry, you’ll see convolutions on protein or DNA sequences, on 2D imaging data, and occasionally on 3D spatial
data like average density from a molecular simulation. What makes a convolution different from a dense layer is that the
number of trainable weights is more flexible than input grid shape × output shape, which is what you would get with a
dense layer. Since the trainable parameters don’t depend on the input grid shape, you don’t learn to depend on location
in the image. This is important if you’re hoping to learn something independent of location on the input grid – like if a
specific object is present in the image independent of where it is located.
In a convolution, you specify a kernel shape that defines the size of trainable parameters. The kernel shape defines a
window over your input data in which a dense neural network is applied. The rank of the kernel shape is the rank of your
grid + 1, where the extra axis accounts for channels. For example, for images you might define a kernel shape of 5 × 5.
The kernel shape will become 5 × 5 × 𝐶, where 𝐶 is the number of channels. When referring to a convolution as 1D,
2D, or 3D, we’re referring to the grid of the input data and thus the kernel shape. A 2D convolution actually has an input
of rank 4 tensors, the extra 2 axes accounting for batch and channels. The kernel shape of 5 × 5 means that the output of
a specific value in the grid will depend on its 24 nearest neighboring pixels (2 in each direction). Note that the kernel is
used like a normal dense layer – it can have bias (dimension 𝐶), output activation, and regularization.
Practically, convolutions are always grouped in parallel. You have a set of 𝐹 kernels, where 𝐹 is called the number of
filters. Each of these filters is completely independent and if you examine what they learn, some filters will learn to
identify squares and some might learn to identify color or others will learn textures. Filters is a term left-over from image
processing, which is the field where convolutions were first explored. Combining all of these together, a 2D convolution
will have an input shape of (𝐵, 𝐻, 𝑊, 𝐶) and an output of (𝐵, ≈ 𝐻, ≈ 𝑊, 𝐹), where 𝐹 is the number of filters chosen,
and the ≈ accounts for the fact that when you slide your kernel window over the input data, you’ll lose some values on
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the edge. This can either be treated by padding, so your input height and width match output height and width, or your
dimensionality is reduced by a small amount (e.g., going from 128×128 to 125×125). A 1D convolution will have input
shape (𝐵, 𝐿, 𝐶) and output shape (𝐵, ≈ 𝐿, 𝐹). As a practical example, consider a convolution on DNA. 𝐿 is length of
the sequence. 𝐶, your channels, will be one-hot indicators for the base (T, C, A, G).

padding

Padding means insert some constants to make a tensor increase in shape. For example, if I want all my tensors to be
of shape (32,32) and some are smaller, I could pad by adding 0s until the shape is (32,32).

One of the important properties we’ll begin to discuss is invariances and equivariances. An invariance means the output
from a neural network (or a general function) is insensitive to changes in input. For example, a translational invariance
means that the output does not change if the input is translated. Convolutions and pooling should be chosen when you want
to have translation invariance. For example, if you are identifying if a cat exists in an image, you want your network
to give the same answer even if the cat is translated in the image to different regions. However, just because you use a
convolution layer does not make a neural network automatically translationally invariant. You must include other layers to
achieve this. Convolutions are actually translationally equivariant – if you translate all pixels in your input, the output will
also be translated. People usually do not distinguish between equivariance and invariance. If you are trying to identify
where a cat is located in an image you would still use convolutions but you want your neural network to be translationally
equivariant, meaning your guess about where the cat is located is sensitive to where the cat is located in the input pixels.
The reason convolutions have this property is that the trainable parameters, the kernel, are location independent. You use
the same kernel on every region of the input.

equivariance

It’s a bit more complicated. Convolutions and pooling are almost translationally equivariant. There are edge effects
because images are not infinitely wide so something special always must be done to deal with pixels near the edges of
images, which prevents them from being fully equivariant.

7.2.2 Pooling

Convolutions are commonly paired with pooling layers because pooling also is translationally equivariant. If your goal is to
produce a single number (regression) or class (classification) from an input image or sequence, you need to reduce the rank
to 0, a scalar. After a convolution, you could use a reduction like average or maximum. It has been shown empirically that
reducing the number of elements of your features more gradually is better. One way is through pooling. Pooling is similar
to convolutions, in that you define a kernel shape (called window shape), but pooling has no trainable parameters. Instead,
you run a window across your input grid and compute a reduction. Commonly an average or maximum is computed. If
your pool window is a 2 × 2 on an input of (𝐵, 𝐻, 𝑊, 𝐹), then your output will be (𝐵, 𝐻/2, 𝑊/2, 𝐹). In convolutional
neural networks, often multiple blocks of convolutions and poolings are combined. For example, you might use three
rounds of convolutions and pooling to take an image from 32 × 32 down to a 4 × 4. Read more about pooling here
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7.2.3 Embedding

Another important type of input layers are embeddings. Embeddings convert integers into vectors. They are typically
used to convert characters or words into numerical vectors. The characters or words are first converted into tokens
separately as a pre-processing step and then the input to the embedding layer is the indices of the token. The indices
are integer values that index into a dictionary of all possible tokens. It sounds more complex than it is. For example,
we might tokenize characters in the alphabet. There are 26 tokens (letters) in the alphabet (dictionary of tokens) and we
could convert the word “hello” into the indices [7, 4, 11, 11, 14], where 7 means the 7th letter of the alphabet.
After converting into indices, an embedding layer converts these indices into dense vectors of a chosen dimension. The
rationale behind embeddings is to go from a large discrete space (e.g., all words in the English language) into a much
smaller space of real numbers (e.g., vectors of size 5). You might use embeddings for converting monomers in a polymer
into dense vectors or atom identities in a molecule or DNA bases. We’ll see an embedding layer in the example below.

7.3 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages.

Tip: To install packages, execute this code in a new cell.

!pip install dmol-book

If you find install problems, you can get the latest working versions of packages used in this book here

7.4 Example

At this point, we have enough common layers to try to build a neural network. We will combine these three layers to
predict if a protein is soluble. Our dataset comes from [CSTR14] and consists of proteins known to be soluble or insoluble.
As usual, the code below sets-up our imports.

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import urllib
import dmol

Our task is binary classification. The data is split into two: positive and negative examples. We’ll need to rearrange a little
into a normal dataset with labels and training/testing split. We also really really need to shuffle our data, so it doesn’t see
all positives and then all negatives.

urllib.request.urlretrieve(
"https://github.com/whitead/dmol-book/raw/master/data/solubility.npz",
"solubility.npz",

)
with np.load("solubility.npz") as r:

pos_data, neg_data = r["positives"], r["negatives"]

# create labels and stich it all into one
# tensor

(continues on next page)

7.3. Running This Notebook 109

https://github.com/whitead/dmol-book/blob/master/package/requirements.txt


Deep Learning for Molecules and Materials

(continued from previous page)

labels = np.concatenate(
(

np.ones((pos_data.shape[0], 1), dtype=pos_data.dtype),
np.zeros((neg_data.shape[0], 1), dtype=pos_data.dtype),

),
axis=0,

)
features = np.concatenate((pos_data, neg_data), axis=0)
# we now need to shuffle before creating TF dataset
# so that our train/test/val splits are random
i = np.arange(len(labels))
np.random.shuffle(i)
labels = labels[i]
features = features[i]
full_data = tf.data.Dataset.from_tensor_slices((features, labels))

# now split into val, test, train
N = pos_data.shape[0] + neg_data.shape[0]
print(N, "examples")
split = int(0.1 * N)
test_data = full_data.take(split).batch(16)
nontest = full_data.skip(split)
val_data, train_data = nontest.take(split).batch(16), nontest.skip(split).shuffle(

1000
).batch(16)

18453 examples

Before getting to modeling, let’s examine our data. The protein sequences have already been tokenized. There are 20
possible values at each position because there are 20 amino acids possible in proteins. Let’s see a soluble protein

pos_data[0]

array([13, 17, 15, 16, 1, 1, 1, 17, 8, 9, 7, 1, 1, 4, 7, 6, 2,
11, 2, 7, 11, 2, 8, 11, 17, 2, 6, 11, 15, 17, 8, 20, 1, 20,
20, 17, 1, 6, 4, 8, 7, 20, 1, 9, 8, 1, 17, 20, 16, 17, 20,
16, 20, 11, 16, 6, 6, 15, 11, 2, 10, 8, 20, 16, 11, 2, 2, 8,
16, 19, 11, 17, 8, 11, 10, 2, 6, 2, 2, 20, 14, 1, 11, 3, 20,
11, 16, 16, 2, 6, 16, 1, 20, 1, 4, 18, 14, 1, 3, 15, 7, 2,
15, 2, 8, 18, 2, 6, 14, 4, 19, 20, 2, 18, 17, 1, 9, 15, 12,
1, 8, 13, 15, 20, 11, 7, 4, 1, 11, 1, 6, 11, 9, 5, 2, 11,

17, 4, 11, 10, 15, 11, 8, 1, 16, 4, 4, 11, 11, 20, 1, 7, 20,
11, 4, 8, 2, 8, 2, 3, 8, 2, 15, 11, 20, 3, 14, 3, 8, 2,
11, 9, 4, 20, 7, 14, 2, 8, 20, 20, 2, 20, 16, 2, 4, 6, 15,
16, 1, 20, 17, 16, 11, 7, 0, 0, 0, 0, 0, 0])

Notice that integers/indices are used because our data is tokenized already. To make our data all be the same input shape,
a special token (0) is inserted at the end indicating no amino acid is present. This needs to be treated carefully, because
it should be zeroed throughout the network. Luckily this is built into Keras, so we do not need to worry about it.
This data is perfect for an embedding because we need to convert token indices to real vectors. Then we will use 1D
convolutions to look for sequence patterns with pooling. We need to then make sure our final layer is a sigmoid, just like
in Classification. This architecture is inspired by the original work on pooling with convolutions [LecunBottouBengio-
Haffner98]. The number of layers and kernel sizes below are hyperparameters. You are encouraged to experiment with
these or find improvements!
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We begin with an embedding. We’ll use a 2-dimensional embedding, which gives us two channels for our sequence. We’ll
just choose our kernel filter size for the 1D convolution to be 5 and we’ll use 16 filters. Beyond that, the rest of the network
is about distilling gradually into a final class.

model = tf.keras.Sequential()

# make embedding and indicate that 0 should be treated specially
model.add(

tf.keras.layers.Embedding(
input_dim=21, output_dim=16, mask_zero=True, input_length=pos_data.shape[-1]

)
)

# now we move to convolutions and pooling
model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=5, activation="relu"))
model.add(tf.keras.layers.MaxPooling1D(pool_size=4))

model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=3, activation="relu"))
model.add(tf.keras.layers.MaxPooling1D(pool_size=2))

model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=3, activation="relu"))
model.add(tf.keras.layers.MaxPooling1D(pool_size=2))

# now we flatten to move to hidden dense layers.
# Flattening just removes all axes except 1 (and implicit batch is still in there as␣

↪always!)

model.add(tf.keras.layers.Flatten())

model.add(tf.keras.layers.Dense(256, activation="relu"))
model.add(tf.keras.layers.Dense(64, activation="relu"))
model.add(tf.keras.layers.Dense(1, activation="sigmoid"))

model.summary()

Model: "sequential"

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

embedding (Embedding) (None, 200, 16) 336

conv1d (Conv1D) (None, 196, 16) 1296

7.4. Example 111



Deep Learning for Molecules and Materials

max_pooling1d (MaxPooling1D (None, 49, 16) 0

)

conv1d_1 (Conv1D) (None, 47, 16) 784

max_pooling1d_1 (MaxPooling (None, 23, 16) 0

1D)

conv1d_2 (Conv1D) (None, 21, 16) 784

max_pooling1d_2 (MaxPooling (None, 10, 16) 0

1D)

flatten (Flatten) (None, 160) 0

dense (Dense) (None, 256) 41216

dense_1 (Dense) (None, 64) 16448

dense_2 (Dense) (None, 1) 65
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=================================================================

Total params: 60,929

Trainable params: 60,929

Non-trainable params: 0

_________________________________________________________________

Take a moment to look at the model summary (shapes). This is a fairly complex neural network. If you can understand
this, you’ll have a grasp on most current networks used in deep learning. Now we’ll begin training. Since we are doing
classification, we’ll also examine accuracy on validation data as we train.

model.compile("adam", loss="binary_crossentropy", metrics=["accuracy"])
result = model.fit(train_data, validation_data=val_data, epochs=10, verbose=0)

plt.plot(result.history["loss"], label="training")
plt.plot(result.history["val_loss"], label="validation")
plt.legend()
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.show()

You can see this is a classic case of overfitting, with the validation data rising quickly as we improve our loss on the
training data. Indeed, our model is quite expressive in its capability to fit the training data but it is incidentally fititng the
noise. We have 61,000 trainable parameters and about 15,000 training examples, so this is not a surprise. However, we
still able to learn a little bit – our accuracy is above 50%. This is actually a challenging dataset and the state-of-the art
result is 77% accuracy [KRK+18]. We need to expand our tools to include layers that can address overfitting.
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7.5 Back propagation

At this stage, we should probably talk about back propagation and its connection to automatic gradient computation
(autograds). This is how training “just works” when we take a gradient. This is actually a bit of a complicated topic, but
it also nearly invisible to users of modern deep learning packages. Thus, I have chosen to not cover it in this book. You
can find comprehensive discussions of modern autograd in [BPRS18] and in the Jax manual.

7.6 Regularization

Aswe saw in theML chapters, regularization is a strategy that changes your training procedure (often by adding loss terms)
to prevent overfitting. There is a nice argument for it in the bias-variance trade-off regarding model complexity, however
this doesn’t seem to hold in practice [NMB+18]. Thus, we view regularization as an empirical process. Regularization,
like other hyperparameter tuning, is dependent on the layers, how complex your model is, your data, and especially if your
model is underfit or overfit. Underfitting means you could train longer to improve validation loss. Adding regularization if
your model is underfit will usually reduce performance. Consider training longer or adjusting learning rates if you observe
this.

7.6.1 Early Stopping

Themost commonly used and simplest form of regularization is early stopping. Early stopping means monitoring the loss
on your validation data and stopping training once it begins to rise. Normally, training is done until converged – meaning
the loss stops decreasing. Early stopping tries to prevent overfitting by looking at the loss on unseen data (validation data)
and stopping once that begins to rise. This is an example of regularization because the weights are limited to move a fixed
distance from their initial value. Just like in L2 regularization, we’re squeezing our trainable weights. Early stopping can
be a bit more complicated to implement in practice than it sounds, so check out how frameworks do it before trying to
implement yourself (e.g., tf.keras.callbacks.EarlyStopping).

7.6.2 Weight

Weight regularization is the addition of terms to the loss that depend on the trainable weights in the solubility model
example. These can be L2 (√∑ 𝑤2

𝑖 ) or L1 (∑ |𝑤𝑖|). You must choose the strength, which is expressed as a parameter
(often denoted 𝜆) that should be much less than 1. Typically values of 0.1 to 1 × 10−4 are chosen. This may be broken
into kernel regularization, which affects the multiplicative weights in a dense or convolution neural network, and bias
regularization. Bias regularization is rarely seen in practice.

7.6.3 Activity

Activity regularization is the addition of terms to the loss that depend on the output from a layer. Activity regularization
ultimately leads to minimizing weight magnitudes, but it makes the strength of that effect depend on the output from the
layers. Weight regularization has the strongest effect on weights that have little effect on layer output, because they have
no gradient if they have little effect on the output. In contrast, activity regularization has the strongest effect on weights
that greatly affect layer output. Conceptually, weight regularization reduces weights that are unimportant but could harm
generalization error if there is a shift in the type of features seen in testing. Activity regularization reduces weights that
affect layer output and is more akin to early stopping by reducing how far those weights can move in training.
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7.6.4 Batch Normalization

It is arguable if batch normalization is a regularization technique – there have been probably 10,000 papers on why it
works. Batch normalization is a layer that is added to a neural network with trainable weights, but its trainable weights
are not updated via gradient descent of the loss. Batch normalization has a layer equation of:

𝑓(𝑋) = 𝑋 − �̄�
𝑆 (7.1)

where �̄� and 𝑆 are the sample mean and variance taken across the batch axis (zeroth axis of 𝑋). This has the effect of
“smoothing” out the magnitudes of values seen between batches. Remember that activations like ReLU depend on values
being near 0 (since the nonlinear part is at 𝑥 = 0) and tanh has the most change in output around 𝑥 = 0, so you typically
want your intermediate layer outputs to be around 0. At inference time you may not have batches or your batches may
be a different size, so �̄� and 𝑆 are set to the average across all batches seen in training data. A common explanation
of batch normalization is that it smooths out the optimization landscape by forcing layer outputs to be approximately
normal[STIMkadry18].

Inference is the word for when you use your model to make predictions. Training is when you train the model and
inference is when you use the model.

Layer Normalization

Batch normalization depends on there being a constant batch size. Some kinds of data, like text or a graphs, have different
sizes and so the batch mean/variance can change significantly. Layer normalization avoids this problem by normalizing
across the features (the non-zero axes) instead of the batch. This has a similar effect of making the layer output features
behave well-centered at 0 but without having highly variable means/variances because of batch to batch variation. You’ll
see these in graph neural networks and recurrent neural networks, with both take variable sized inputs.

7.6.5 Dropout

The last regularization type is dropout. Like batch normalization, dropout is typically viewed as a layer and has no
trainable parameters. In dropout, we randomly zero-out specific elements of the input and then rescale the output so its
average magnitude is unchanged. You can think of it like masking. There is a mask tensor 𝑀 which contains 1s and 0s
and is multiplied by the input. It is called masking because we mask whatever was in the elements that were multiplied by
0. Then the output is multiplied by |𝑀|/ ∑ 𝑀 where |𝑀| is the number of elements in 𝑀 . Dropout forces your neural
network to learn to use different features or “pathways” by zeroing out elements. Weight regularization squeezes unused
trainable weights through minimization. Dropout tries to force all trainable weights to be used by randomly negating
weights. Dropout is more common than weight or activity regularization but has arguable theoretical merit. Some have
proposed it is a kind of sampling mechanism for exploring model variations[GG16]. Despite it appearing ad-hoc, it is
effective. Note that dropout is only used during training, not for inference. You need to choose the dropout rate when
using it, another hyperparameter. Usually, you will want to choose a rate of 0.05–0.35. 0.2 is common. Too small of a
value – meaning you rarely do dropout – makes the effect too small to matter. Too large of a value – meaning you often
dropout values – can prevent you from actually learning. As fewer nodes get updated with dropout, larger learnings rates
with decay and a larger momentum can help with the model’s performance.
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Fig. 7.2: Dropout.

7.7 Residues

One last “layer” note tomention is residues. One of the classic problems in neural network training is vanishing gradients.
If your neural network is deep and many features contribute to the label, you can have very small gradients during training
that make it difficult to train. This is visible as underfitting. One way this can be addressed is through careful choice of
optimization and learning rates. Another way is to add “residue” connections in the neural network. Residue connections
are a fancy way of saying “adding” or “concatenating” later layers with early layers. The most common way to do this is:

𝑋𝑖+1 = 𝜎(𝑊 𝑖𝑋𝑖 + 𝑏𝑖) + 𝑋𝑖 (7.2)

This is the usual equation for a dense neural network but we’ve added the previous layer output (𝑋𝑖) to our output. Now
when you take a gradient of earlier weights from layer 𝑖 − 1, they will appear through both the 𝜎(𝑊 𝑖𝑋𝑖 + 𝑏𝑖) term via
the chain rule and the 𝑋𝑖 term. This goes around the activation 𝜎 and the effect of 𝑊 𝑖. Note this continues at all layers
and then a gradient can propagate back to earlier layers via either term. You can add the “residue” connection to the
previous layer as shown here or go back even earlier. You can also be more complex and use a trainable function for how
the residue term (𝑋𝑖) can be treated. For example:

𝑋𝑖+1 = 𝜎(𝑊 𝑖𝑋𝑖 + 𝑏𝑖) + 𝑊 ′𝑖𝑋𝑖 (7.3)

where𝑊 ′𝑖 is a set of new trainable parameters. We have seen that there are many hyperparametes for tuning and adjusting
residue connections is one of the least effective things to adjust. So don’t expect much of an improvement. However, if
you’re seeing underfitting and inefficient training, perhaps it’s worth investigating.
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7.8 Blocks

You can imagine that we might join a dense layer with dropout, batch normalization, and maybe a residue. When you
groupmultiple layers together, this can be called a block for simplicity. For example, you might use the word “convolution
block” to describe a sequential layers of convolution, pooling, and dropout.

7.9 Dropout Regularization Example

Now let’s try to add a few dropout layers to see if we can do better on our example above.

model = tf.keras.Sequential()

# make embedding and indicate that 0 should be treated specially
model.add(

tf.keras.layers.Embedding(
input_dim=21, output_dim=16, mask_zero=True, input_length=pos_data.shape[-1]

)
)

# now we move to convolutions and pooling
# NOTE: Keras doesn't respect masking here
# I should switch to PyTorch.
model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=5, activation="relu"))
model.add(tf.keras.layers.MaxPooling1D(pool_size=4))

model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=3, activation="relu"))
model.add(tf.keras.layers.MaxPooling1D(pool_size=2))

model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=3, activation="relu"))
model.add(tf.keras.layers.MaxPooling1D(pool_size=2))

# now we flatten to move to hidden dense layers.
# Flattening just removes all axes except 1 (and implicit batch is still in there as␣

↪always!)

model.add(tf.keras.layers.Flatten())

# Here is the dropout
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Dense(256, activation="relu"))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Dense(64, activation="relu"))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Dense(1, activation="sigmoid"))

model.summary()

Model: "sequential_1"

_________________________________________________________________

Layer (type) Output Shape Param #
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=================================================================

embedding_1 (Embedding) (None, 200, 16) 336

conv1d_3 (Conv1D) (None, 196, 16) 1296

max_pooling1d_3 (MaxPooling (None, 49, 16) 0

1D)

conv1d_4 (Conv1D) (None, 47, 16) 784

max_pooling1d_4 (MaxPooling (None, 23, 16) 0

1D)

conv1d_5 (Conv1D) (None, 21, 16) 784

max_pooling1d_5 (MaxPooling (None, 10, 16) 0

1D)

flatten_1 (Flatten) (None, 160) 0

dropout (Dropout) (None, 160) 0
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dense_3 (Dense) (None, 256) 41216

dropout_1 (Dropout) (None, 256) 0

dense_4 (Dense) (None, 64) 16448

dropout_2 (Dropout) (None, 64) 0

dense_5 (Dense) (None, 1) 65

=================================================================

Total params: 60,929

Trainable params: 60,929

Non-trainable params: 0

_________________________________________________________________

model.compile("adam", loss="binary_crossentropy", metrics=["accuracy"])
result = model.fit(train_data, validation_data=val_data, epochs=10, verbose=0)

plt.plot(result.history["loss"], label="training")
plt.plot(result.history["val_loss"], label="validation")
plt.legend()
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.show()
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We added a few dropout layers and now we can see the validation loss is a little better but additional training will indeed
result it in rising. Feel free to try the other ideas above to see if you can get the validation loss to decrease like the training
loss.

7.10 L2 Weight Regularization Example

Now we’ll demonstrate adding weight regularization.

model = tf.keras.Sequential()

# make embedding and indicate that 0 should be treated specially
model.add(

tf.keras.layers.Embedding(
input_dim=21, output_dim=16, mask_zero=True, input_length=pos_data.shape[-1]

)
)

# now we move to convolutions and pooling
model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=5, activation="relu"))
model.add(tf.keras.layers.MaxPooling1D(pool_size=4))

model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=3, activation="relu"))
model.add(tf.keras.layers.MaxPooling1D(pool_size=2))

model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=3, activation="relu"))
model.add(tf.keras.layers.MaxPooling1D(pool_size=2))

# now we flatten to move to hidden dense layers.
# Flattening just removes all axes except 1 (and implicit batch is still in there as␣

↪always!)

model.add(tf.keras.layers.Flatten())

(continues on next page)
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(continued from previous page)

# HERE IS THE REGULARIZATION:
model.add(tf.keras.layers.Dense(256, activation="relu", kernel_regularizer="l2"))
model.add(tf.keras.layers.Dense(64, activation="relu", kernel_regularizer="l2"))
model.add(tf.keras.layers.Dense(1, activation="sigmoid"))

model.compile("adam", loss="binary_crossentropy", metrics=["accuracy"])
result = model.fit(train_data, validation_data=val_data, epochs=10, verbose=0)

plt.plot(result.history["loss"], label="training")
plt.plot(result.history["val_loss"], label="validation")
plt.legend()
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.show()

L2 regularization is too strong it appears, preventing learning. You could go back and reduce the strength; here we’re
just using the default which doesn’t look appropriate for our setting. Tuning hyperparameters like this is a favorite past
time of neural network engineers and we could go on forever. We’ll stop here and leave it as an exercise for the reader to
continue exploring hyperparameters.

7.11 Activation Functions

Recall in Deep Learning Overview we mentioned that activation functions must be nonlinear and we often want them to
have a region of input where the output value is zero. ReLU is the simplest example that satisfies these conditions - its
output is zero for negative inputs and 𝑓(𝑥) = 𝑥 for positive values. Choosing activation is another hyperparameter and
choice that we make. People used activations like tanh or sigmoids in early neural network research. ReLU began to
dominate in modern deep learning because it’s so efficient that models could be made larger for the same runtime speed.
Since 2019, this has been revisited because modern GPUs can run a variety of activation functions now quite
quickly[EYG19]. Two commonly used modern activation functions are Gaussian Error Linear Units (GELU)[HG16]
and Swish[EYG19]. They are shown in Fig. 7.3. They have these two properties of nonlinearity and an ability to turn-off
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Fig. 7.3: Comparison of the usual ReLU activation function and GELU and Swish.

at negative values. They seem to give better results because of their non-zero gradient at negative values; they can con-
tinue to respond to gradients while they are turned off. It is more common now to see Swish than ReLU in most newer
networks and GELU is specifically seen in transformers (discussed in Deep Learning on Sequences.
The equation for Swish is:

𝜎(𝑥) = 𝑥 ⋅ sigmoid(𝑥) = 𝑥 1
1 + 𝑒−𝑥

and the equation for GELU is:

𝜎(𝑥) = 𝑥 ⋅ Φ(𝑥) = 𝑥 ⋅ 1
2 [1 + erf(𝑥 − 𝜇

𝜎
√

2
)]

7.12 Discussion

Designing and training neural networks is a complex task. The best approach is to always start simple and work your way
up in complexity. Remember, you have to write correct code, create a competent model, and have clean data. If you start
with a complex model it can be hard to discern if learning problems are due to bugs, the model, or the data. My advice
is to always start with a pre-trained or simple baseline network from a previous paper. If you find yourself designing and
training your own neural network, read through Andrej Karpathy’s excellent guide on how to approach this task.
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7.13 Chapter Summary

• Layers are created for specific tasks, and given the variety of layers, there are a vast number of permutations of
layers in a deep neural network.

• Convolution layers are used for data defined on a regular grid (such as images). In a convolution, one defines the
size of the trainable parameters through the kernel shape.

• An invariance is when the output from a neural network is insensitive to spatial changes in the input (translation,
rotation, rearranging order)

• An equivariance is when the output from a neural network changes the same way as the input. See Input Data &
Equivariances and Equivariant Neural Networks for concrete definitions.

• Convolution layers are often paired with pooling layers. A pooling layer behaves similarly to a convolution layer,
except a reduction is computed and the output is a smaller shape (same rank) than the input.

• Embedding layers convert indices into vectors, and are typically used as pre-processing steps.
• Hyperparameters are choices regarding the shape of the layers, the activation function, initialization parameters,
and other layer arguments. They can be tuned but are not trained on the data.

• Hyperparameters must be tuned by hand, as they can be continuous, categorical, or discrete variables, but there are
algorithms being researched that tune hyperparameters.

• Tuning the hyperparameters can make training faster or require less training data.
• Using a validation data set can measure the overfitting of training data, and is used to help choose the hyperparam-
eters.

• Regularization is an empirical technique used to change training procedures to prevent overfitting. There are five
common types of regularization: early stopping, weight regularization, activity regularization, batch normalization,
and dropout.

• Vanishing gradient problems can be addressed by adding “residue” connections, essentially adding later layers with
early layers in the neural network.

7.14 Cited References
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CHAPTER

EIGHT

GRAPH NEURAL NETWORKS

Historically, the biggest difficulty for machine learning with molecules was the choice and computation of “descriptors”.
Graph neural networks (GNNs) are a category of deep neural networks whose inputs are graphs and provide a way around
the choice of descriptors. A GNN can take a molecule directly as input.

Audience & Objectives
This chapter builds on Standard Layers and Regression & Model Assessment. Although it is defined here, it would be good
to be familiarize yourself with graphs/networks. After completing this chapter, you should be able to

• Represent a molecule in a graph
• Discuss and categorize common graph neural network architectures
• Build a GNN and choose a read-out function for the type of labels
• Distinguish between graph, edge, and node features
• Formulate a GNN into edge-updates, node-updates, and aggregation steps

GNNs are specific layers that input a graph and output a graph. You can find reviews of GNNs in Dwivedi et al.[DJL+20],
Bronstein et al.[BBL+17], and Wu et al.[WPC+20]. GNNs can be used for everything from coarse-grained molecular
dynamics [LWC+20] to predicting NMR chemical shifts [YCW20] to modeling dynamics of solids [XFLW+19]. Before
we dive too deep into them, we must first understand how a graph is represented in a computer and how molecules are
converted into graphs.
You can find an interactive introductory article on graphs and graph neural networks at distill.pub [SLRPW21]. Most
current research in GNNs is done with specialized deep learning libraries for graphs. As of 2022, the most common are
PyTorch Geometric, Deep Graph library, Spektral, and TensorFlow GNNS.

8.1 Representing a Graph

A graph G is a set of nodes V and edges E. In our setting, node 𝑖 is defined by a vector ⃗𝑣𝑖, so that the set of nodes can be
written as a rank 2 tensor. The edges can be represented as an adjacency matrix E, where if 𝑒𝑖𝑗 = 1 then nodes 𝑖 and 𝑗 are
connected by an edge. In many fields, graphs are often immediately simplified to be directed and acyclic, which simplifies
things. Molecules are instead undirected and have cycles (rings). Thus, our adjacency matrices are always symmetric
𝑒𝑖𝑗 = 𝑒𝑗𝑖 because there is no concept of direction in chemical bonds. Often our edges themselves have features, so that
𝑒𝑖𝑗 is itself a vector. Then the adjacency matrix becomes a rank 3 tensor. Examples of edge features might be covalent
bond order or distance between two nodes.
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Fig. 8.1: Methanol with atoms numbered so that we can convert it to a graph.

one-hot

Recall that a one-hot is a vector of all 0s and a single 1 - [0, 1, 0, 0]. The index of the non-zero element
indictates the class. In this case, class is element.

Let’s see how a graph can be constructed from a molecule. Consider methanol, shown in Fig. 8.1. I’ve numbered the
atoms so that we have an order for defining the nodes/edges. First, the node features. You can use anything for node
features, but often we’ll begin with one-hot encoded feature vectors:

Node C H O
1 0 1 0
2 0 1 0
3 0 1 0
4 1 0 0
5 0 0 1
6 0 1 0

V will be the combined feature vectors of these nodes. The adjacency matrix E will look like:

1 2 3 4 5 6

1 0 0 0 1 0 0
2 0 0 0 1 0 0
3 0 0 0 1 0 0
4 1 1 1 0 1 0
5 0 0 0 1 0 1
6 0 0 0 0 1 0

Take a moment to understand these two. For example, notice that rows 1, 2, and 3 only have the 4th column as non-zero.
That’s because atoms 1-3 are bonded only to carbon (atom 4). Also, the diagonal is always 0 because atoms cannot be
bonded with themselves.
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You can find a similar process for converting crystals into graphs in Xie et al. [XG18]. We’ll now begin with a function
which can convert a smiles string into this representation.

8.2 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages.

Tip: To install packages, execute this code in a new cell.

!pip install dmol-book

If you find install problems, you can get the latest working versions of packages used in this book here

import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import tensorflow as tf
import pandas as pd
import rdkit, rdkit.Chem, rdkit.Chem.rdDepictor, rdkit.Chem.Draw
import networkx as nx
import dmol

soldata = pd.read_csv(
"https://github.com/whitead/dmol-book/raw/master/data/curated-solubility-dataset.

↪csv"
)
np.random.seed(0)
my_elements = {6: "C", 8: "O", 1: "H"}

The hidden cell below defines our function smiles2graph. This creates one-hot node feature vectors for the element
C, H, and O. It also creates an adjacency tensor with one-hot bond order being the feature vector.

nodes, adj = smiles2graph("CO")
nodes

array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.],
[0., 0., 1.],
[0., 0., 1.],
[0., 0., 1.]])
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8.3 A Graph Neural Network

A graph neural network (GNN) is a neural network with two defining attributes:
1. Its input is a graph
2. Its output is permutation equivariant

We can understand clearly the first point. Here, a graph permutation means re-ordering our nodes. In our methanol
example above, we could have easily made the carbon be atom 1 instead of atom 4. Our new adjacency matrix would
then be:

1 2 3 4 5 6

1 0 1 1 1 1 0
2 1 0 0 0 0 0
3 1 0 0 0 0 0
4 1 0 0 0 1 0
5 1 0 0 0 0 1
6 0 0 0 0 1 0

A GNN is permutation equivariant if the output change the same way as these exchanges. If you are trying to model a
per-atom quantity like partial charge or chemical shift, this is obviously essential. If you change the order of atoms input,
you would expect the order of their partial charges to similarly change.
Often we want to model a whole-molecule property, like solubility or energy. This should be invariant to changing
the order of the atoms. To make an equivariant model invariant, we use read-outs (defined below). See Input Data &
Equivariances for a more detailed discussion of equivariance.

8.3.1 A simple GNN

We will often mention a GNN when we really mean a layer from a GNN. Most GNNs implement a specific layer that can
deal with graphs, and so usually we are only concerned with this layer. Let’s see an example of a simple layer for a GNN:

𝑓𝑘 = 𝜎 (∑
𝑖

∑
𝑗

𝑣𝑖𝑗𝑤𝑗𝑘) (8.1)

This equation shows that we first multiply every node (𝑣𝑖𝑗) feature by trainable weights 𝑤𝑗𝑘, sum over all node features,
and then apply an activation. This will yield a single feature vector for the graph. Is this equation permutation equivariant?
Yes, because the node index in our expression is index 𝑖 which can be re-ordered without affecting the output.
Let’s see an example that is similar, but not permutation equivariant:

𝑓𝑘 = 𝜎 (∑
𝑖

𝑣𝑖𝑗𝑤𝑖𝑘) (8.2)

This is a small change. We have one weight vector per node now. This makes the trainable weights depend on the ordering
of the nodes. Then if we swap the node ordering, our weights will no longer align. So if we were to input two methanol
molecules, which should have the same output, but we switched two atom numbers, we would get different answers. These
simple examples differ from real GNNs in two important ways: (i) they give a single feature vector output, which throws
away per-node information, and (ii) they do not use the adjacency matrix. Let’s see a real GNN that has these properties
while maintaining permutation equivariant.
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8.4 Kipf & Welling GCN

One of the first popular GNNs was the Kipf & Welling graph convolutional network (GCN) [KW16]. Although some
people consider GCNs to be a broad class of GNNs, we’ll use GCNs to refer specifically the Kipf & Welling GCN.
Thomas Kipf has written an excellent article introducing the GCN.
The input to a GCN layer is V, E and it outputs an updated V′. Each node feature vector is updated. The way it updates a
node feature vector is by averaging the feature vectors of its neighbors, as determined by E. The choice of averaging over
neighbors is what makes a GCN layer permutation equivariant. Averaging over neighbors is not trainable, so we must add
trainable parameters. We multiply the neighbor features by a trainable matrix before the averaging, which gives the GCN
the ability to learn. In Einstein notation, this process is:

𝑣𝑖𝑙 = 𝜎 ( 1
𝑑𝑖

𝑒𝑖𝑗𝑣𝑗𝑘𝑤𝑙𝑘) (8.3)

where 𝑖 is the node we’re considering, 𝑗 is the neighbor index, 𝑘 is the node input feature, 𝑙 is the output node feature, 𝑑𝑖
is the degree of node i (which makes it an average instead of sum), 𝑒𝑖𝑗 isolates neighbors so that all non-neighbor 𝑣𝑗𝑘s are
zero, 𝜎 is our activation, and 𝑤𝑙𝑘 is the trainable weights. This equation is a mouthful, but it truly just is the average over
neighbors with a trainable matrix thrown in. One common modification is to make all nodes neighbors of themselves.
This is so that the output node features 𝑣𝑖𝑙 depends on the input features 𝑣𝑖𝑘. We do not need to change our equation,
just make the adjacency matrix have 1s on the diagonal instead of 0 by adding the identity matrix during pre-processing.
Building understanding about the GCN is important for understanding other GNNs. You can view the GCN layer as
a way to “communicate” between a node and its neighbors. The output for node 𝑖 will depend only on its immediate
neighbors. For chemistry, this is not satisfactory. You can stack multiple layers though. If you have two layers, the output
for node 𝑖 will include information about node 𝑖’s neighbors’ neighbors. Another important detail to understand in GCNs
is that the averaging procedure accomplishes two goals: (i) it gives permutation equivariance by removing the effect of
neighbor order and (ii) it prevents a change in magnitude in node features. A sum would accomplish (i) but would cause
the magnitude of the node features to grow after each layer. Of course, you could ad-hoc put a batch normalization layer
after each GCN layer to keep output magnitudes stable but averaging is easy.
To help understand the GCN layer, look at Fig. 8.2. It shows an intermediate step of the GCN layer. Each node feature
is represented here as a one-hot encoded vector at input. The animation in Fig. 8.3 shows the averaging process over
neighbor features. Tomake this animation easy to follow, the trainable weights and activation functions are not considered.
Note that the animation repeats for a second layer. Watch how the “information” about there being an oxygen atom in
the molecule is propagated only after two layers to each atom. All GNNs operate with similar approaches, so try to
understand how this animation works.

8.4.1 GCN Implementation

Let’s now create a tensor implementation of the GCN. We’ll skip the activation and trainable weights for now. We must
first compute our rank 2 adjacency matrix. The smiles2graph code above computes an adjacency tensor with feature
vectors. We can fix that with a simple reduction and add the identity at the same time

nodes, adj = smiles2graph("CO")
adj_mat = np.sum(adj, axis=-1) + np.eye(adj.shape[0])
adj_mat

array([[1., 1., 1., 1., 1., 0.],
[1., 1., 0., 0., 0., 1.],
[1., 0., 1., 0., 0., 0.],
[1., 0., 0., 1., 0., 0.],
[1., 0., 0., 0., 1., 0.],
[0., 1., 0., 0., 0., 1.]])
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Fig. 8.2: Intermediate step of the graph convolution layer. The 3D vectors are the node features and start as one-hot, so
a [1.00, 0.00, 0.00] means hydrogen. The center node will be updated by averaging its neighbors features.

Fig. 8.3: Animation of the graph convolution layer operation. The left is input, right is output node features. Note that
two layers are shown (see title change). As the animation plays out, you can see how the information about the atoms
propagates through the molecule via the averaging over neigbhors. So the oxygen goes from being just an oxygen, to an
oxygen bonded to C and H, to an oxygen bonded to an H and CH3. The colors just reflect the same information in the
numerical values.

130 Chapter 8. Graph Neural Networks



Deep Learning for Molecules and Materials

To compute degree of each node, we can do another reduction:

degree = np.sum(adj_mat, axis=-1)
degree

array([5., 3., 2., 2., 2., 2.])

Now we can put all these pieces together into the Einstein equation

print(nodes[0])
# note to divide by degree, make the input 1 / degree
new_nodes = np.einsum("i,ij,jk->ik", 1 / degree, adj_mat, nodes)
print(new_nodes[0])

[1. 0. 0.]
[0.2 0.2 0.6]

To now implement this as a layer in Keras, we must put this code above into a new Layer subclass. The code is relatively
straightforward, but you can read-up on the function names and Layer class in this tutorial. The threemain changes are that
we create trainable parameters self.w and use them in the tf.einsum, we use an activation self.activation,
and we output both our new node features and the adjacency matrix. The reason to output the adjacency matrix is so that
we can stack multiple GCN layers without having to pass the adjacency matrix each time.

class GCNLayer(tf.keras.layers.Layer):
"""Implementation of GCN as layer"""

def __init__(self, activation=None, **kwargs):
# constructor, which just calls super constructor
# and turns requested activation into a callable function
super(GCNLayer, self).__init__(**kwargs)
self.activation = tf.keras.activations.get(activation)

def build(self, input_shape):
# create trainable weights
node_shape, adj_shape = input_shape
self.w = self.add_weight(shape=(node_shape[2], node_shape[2]), name="w")

def call(self, inputs):
# split input into nodes, adj
nodes, adj = inputs
# compute degree
degree = tf.reduce_sum(adj, axis=-1)
# GCN equation
new_nodes = tf.einsum("bi,bij,bjk,kl->bil", 1 / degree, adj, nodes, self.w)
out = self.activation(new_nodes)
return out, adj

A lot of the code above is Keras/TF specific and getting the variables to the right place. There are really only two key
lines here. The first is to compute the degree by summing over the columns of the adjacency matrix:

degree = tf.reduce_sum(adj, axis=-1)

The second key line is to do the GCN equation (8.3) (without the activation)
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new_nodes = tf.einsum("bi,bij,bjk,kl->bil", 1 / degree, adj, nodes, self.w)

We can now try our layer:

gcnlayer = GCNLayer("relu")
# we insert a batch axis here
gcnlayer((nodes[np.newaxis, ...], adj_mat[np.newaxis, ...]))

(<tf.Tensor: shape=(1, 6, 3), dtype=float32, numpy=
array([[[0. , 0.22815037, 0.11252856],

[0.04706494, 0.4801577 , 0.41471443],
[0. , 0.22336864, 0.24838853],
[0. , 0.22336864, 0.24838853],
[0. , 0.22336864, 0.24838853],
[0.07218027, 0.42193758, 0.20330799]]], dtype=float32)>,

<tf.Tensor: shape=(1, 6, 6), dtype=float32, numpy=
array([[[1., 1., 1., 1., 1., 0.],

[1., 1., 0., 0., 0., 1.],
[1., 0., 1., 0., 0., 0.],
[1., 0., 0., 1., 0., 0.],
[1., 0., 0., 0., 1., 0.],
[0., 1., 0., 0., 0., 1.]]], dtype=float32)>)

It outputs (1) the new node features and (2) the adjacency matrix. Let’s make sure we can stack these and apply the GCN
multiple times

x = (nodes[np.newaxis, ...], adj_mat[np.newaxis, ...])
for i in range(2):

x = gcnlayer(x)
print(x)

(<tf.Tensor: shape=(1, 6, 3), dtype=float32, numpy=
array([[[0.05032339, 0.24143484, 0.12720497],

[0.12059431, 0.36160874, 0.23188105],
[0.05514492, 0.19730167, 0.10723374],
[0.05514492, 0.19730167, 0.10723374],
[0.05514492, 0.19730167, 0.10723374],
[0.13564095, 0.4374843 , 0.2817377 ]]], dtype=float32)>, <tf.Tensor:␣

↪shape=(1, 6, 6), dtype=float32, numpy=
array([[[1., 1., 1., 1., 1., 0.],

[1., 1., 0., 0., 0., 1.],
[1., 0., 1., 0., 0., 0.],
[1., 0., 0., 1., 0., 0.],
[1., 0., 0., 0., 1., 0.],
[0., 1., 0., 0., 0., 1.]]], dtype=float32)>)

It works! Why do we see zeros though? Probably because we had negative numbers that were removed by our ReLU
activation. This will be solved by training and increasing our dimension number.
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8.5 Solubility Example

We’ll now revisit predicting solubility with GCNs. Remember before that we used the features included with the dataset.
Now we can use the molecular structures directly. Our GCN layer outputs node-level features. To predict solubility, we
need to get a graph-level feature. We’ll see later how to be more sophisticated in this process, but for now let’s just take
the average over all node features after our GCN layers. This is simple, permutation invariant, and gets us from node-level
to graph level. Here’s an implementation of this

class GRLayer(tf.keras.layers.Layer):
"""A GNN layer that computes average over all node features"""

def __init__(self, name="GRLayer", **kwargs):
super(GRLayer, self).__init__(name=name, **kwargs)

def call(self, inputs):
nodes, adj = inputs
reduction = tf.reduce_mean(nodes, axis=1)
return reduction

The key line in that code is to just to compute the mean over the nodes (axis=1):

reduction = tf.reduce_mean(nodes, axis=1)

To complete our deep solubility predictor, we can add some dense layers and make sure we have a single-output without
activation since we’re doing regression. Note this model is defined using the Keras functional API which is necessary
when you have multiple inputs.

ninput = tf.keras.Input(
(

None,
100,

)
)
ainput = tf.keras.Input(

(
None,
None,

)
)
# GCN block
x = GCNLayer("relu")([ninput, ainput])
x = GCNLayer("relu")(x)
x = GCNLayer("relu")(x)
x = GCNLayer("relu")(x)
# reduce to graph features
x = GRLayer()(x)
# standard layers (the readout)
x = tf.keras.layers.Dense(16, "tanh")(x)
x = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(inputs=(ninput, ainput), outputs=x)

where does the 100 come from? Well, this dataset has lots of elements so we cannot use our size 3 one-hot encodings
because we’ll have more than 3 unique elements. We previously only had C, H and O. This is a good time to update our
smiles2graph function to deal with this.
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def gen_smiles2graph(sml):
"""Argument for the RD2NX function should be a valid SMILES sequence
returns: the graph
"""
m = rdkit.Chem.MolFromSmiles(sml)
m = rdkit.Chem.AddHs(m)
order_string = {

rdkit.Chem.rdchem.BondType.SINGLE: 1,
rdkit.Chem.rdchem.BondType.DOUBLE: 2,
rdkit.Chem.rdchem.BondType.TRIPLE: 3,
rdkit.Chem.rdchem.BondType.AROMATIC: 4,

}
N = len(list(m.GetAtoms()))
nodes = np.zeros((N, 100))
for i in m.GetAtoms():

nodes[i.GetIdx(), i.GetAtomicNum()] = 1

adj = np.zeros((N, N))
for j in m.GetBonds():

u = min(j.GetBeginAtomIdx(), j.GetEndAtomIdx())
v = max(j.GetBeginAtomIdx(), j.GetEndAtomIdx())
order = j.GetBondType()
if order in order_string:

order = order_string[order]
else:

raise Warning("Ignoring bond order" + order)
adj[u, v] = 1
adj[v, u] = 1

adj += np.eye(N)
return nodes, adj

nodes, adj = gen_smiles2graph("CO")
model((nodes[np.newaxis], adj_mat[np.newaxis]))

<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[0.00021663]],␣
↪dtype=float32)>

We have switched from adjacency tensor to matrix only because a GCN cannot use edge features. Other architectures
though can.

It outputs one number! That’s always nice to have. Now we need to do some work to get a trainable dataset. Our dataset
is a little bit complex because our features are tuples of tensors(V,E) so that our dataset is a tuple of tuples: ((V,E), 𝑦).
We use a generator, which is just a python function that can return multiple times. Our function returns once for every
training example. Then we have to pass it to the from_generator tf.data.Dataset constructor which requires
explicit declaration of the shapes of these examples.

def example():
for i in range(len(soldata)):

graph = gen_smiles2graph(soldata.SMILES[i])
sol = soldata.Solubility[i]
yield graph, sol

(continues on next page)
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(continued from previous page)

data = tf.data.Dataset.from_generator(
example,
output_types=((tf.float32, tf.float32), tf.float32),
output_shapes=(

(tf.TensorShape([None, 100]), tf.TensorShape([None, None])),
tf.TensorShape([]),

),
)

Whew, that’s a lot. Now we can do our usual splitting of the dataset.

test_data = data.take(200)
val_data = data.skip(200).take(200)
train_data = data.skip(400)

And finally, time to train.

model.compile("adam", loss="mean_squared_error")
result = model.fit(train_data.batch(1), validation_data=val_data.batch(1), epochs=10)

plt.plot(result.history["loss"], label="training")
plt.plot(result.history["val_loss"], label="validation")
plt.legend()
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.show()

This model is definitely underfit. One reason is that our batch size is 1. This is a side-effect of making the number of
atoms variable and then Keras/tensorflow has trouble batching together our data if there are two unknown dimensions. A
standard trick is to group together multiple molecules into one graph, but making sure they are disconnected (no bonds
between the molecules). That allows you to batch molecules without increasing the rank of your model/data.
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Let’s now check the parity plot.

yhat = model.predict(test_data.batch(1), verbose=0)[:, 0]
test_y = [y for x, y in test_data]
plt.figure()
plt.plot(test_y, test_y, "-")
plt.plot(test_y, yhat, ".")
plt.text(

min(test_y) + 1,
max(test_y) - 2,
f"correlation = {np.corrcoef(test_y, yhat)[0,1]:.3f}",

)
plt.text(

min(test_y) + 1,
max(test_y) - 3,
f"loss = {np.sqrt(np.mean((test_y - yhat)**2)):.3f}",

)
plt.title("Testing Data")
plt.show()

8.6 Message Passing Viewpoint

One way to more broadly view a GCN layer is that it is a kind of “message-passing” layer. You first compute a message
coming from each neighboring node:

⃗𝑒𝑠𝑖𝑗 = ⃗𝑣𝑠𝑖𝑗W (8.4)
where 𝑣𝑠𝑖𝑗 means the 𝑗th neighbor of node 𝑖. The 𝑠𝑖 means senders to 𝑖. This is how a GCN computes the messages,
it’s just a weight matrix times each neighbor node features. After getting the messages that will go to node 𝑖, ⃗𝑒𝑠𝑖𝑗, we
aggregate them using a function which is permutation invariant to the order of neighbors:

⃗𝑒𝑖 = 1
| ⃗𝑒𝑠𝑖𝑗|

∑ ⃗𝑒𝑠𝑖𝑗 (8.5)
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In the GCN this aggregation is just a mean, but it can be any permutation invariant (possibly trainable) function. Finally,
we update our node using the aggregated message in the GCN:

⃗𝑣′
𝑖 = 𝜎( ⃗𝑒𝑖) (8.6)

where 𝑣′ indicates the new node features. This is simply the activated aggregated message. Writing it out this way, you
can see how it is possible to make small changes. One important paper by Gilmer et al. explored some of these choices
and described how this general idea of message passing layers does well in learning to predict molecular energies from
quantum mechanics [GSR+17]. Examples of changes to the above GCN equations are to include edge information when
computing the neighbor messages or use a dense neural network layer in place of 𝜎. You can think of the GCN as one
type of a broader class of message passing graph neural networks, sometimes abbreviated as MPNN.

8.7 Gated Graph Neural Network

One common variant of the message passing layer is the gated graph neural network (GGN) [LTBZ15]. It replaces the
last equation, the node update, with

⃗𝑣′
𝑖 = GRU( ⃗𝑣𝑖, ⃗𝑒𝑖) (8.7)

where the GRU(⋅, ⋅) is a gated recurrent unit[CGCB14]. A GRU is a binary (two input arguments) neural network that
is typically used in sequence modeling. The interesting property of a GGN relative to a GCN is that it has trainable
parameters in the node update (from the GRU), giving the model a bit more flexibility. In a GGN, the GRU parameters
are kept the same at each layer, like how a GRU is used to model sequences. What’s nice about this is that you can
stack infinite GGN layers without increasing the number of trainable parameters (assuming you makeW the same at each
layer). Thus GGNs are suited for large graphs, like a large protein or large unit cell.

You’ll often see the prefix “gated” on GNNs and that means that the nodes are updated according to a GRU.

8.8 Pooling

Within the message passing viewpoint, and in general for GNNS, the way that messages from neighbors are combined is
a key step. This is sometimes called pooling, since it’s similar to the pooling layer used in convolutional neural networks.
Just like in pooling for convolutional neural networks, there are multiple reduction operations you can use. Typically
you see a sum or mean reduction in GNNs, but you can be quite sophisticated like in the Graph Isomorphism Networks
[XHLJ18]. We’ll see an example in our attention chapter of using self-attention, which can also be used for pooling. It can
be tempting to focus on this step, but it’s been empirically found that the choice of pooling is not so important[LDLio19,
MSK20]. The key property of the pooling is permutation invariance - we want the aggregation operation to not depend
on order of nodes (or edges if pooling over them). You can find a recent review of pooling methods in Grattarola et al.
[GZBA21].
You can see a more visual comparison and overview of the various pooling strategies in this distill article by Daigavane
et al. [DRA21].
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8.9 Readout Function

GNNs output a graph by design. It is rare that our labels are graphs – typically we have node labels or a single graph
label. An example of a node label is partial charge of atoms. An example of a graph label would be the energy of the
molecule. The process of converting the graph output from the GNN into our predicted node labels or graph label is
called the readout. If we have node labels, we can simply discard the edges and use our output node feature vectors from
the GNN as the prediction, perhaps with a few dense layers before our predicted output label.
If we’re trying to predict a graph-level label like energy of the molecule or net charge, we need to be careful when
converting from node/edge features to a graph label. If we simply put the node features into a dense layer to get to the
desired shape graph label, we will lose permutation equivariance (technically it’s permutation invariance now since our
output is graph label, not node labels). The readout we did above in the solubility example was a reduction over the node
features to get a graph feature. Then we used this graph feature in dense layers. It turns out this is the only way [ZKR+17]
to do a graph feature readout: a reduction over nodes to get graph feature and then dense layers to get predicted graph
label from those graph features. You can also do some dense layers on the node features individually, but that already
happens in GNN so I do not recommend it. This readout is sometimes called DeepSets because it is the same form as the
DeepSets architecture, which is a permutation invariant architecture for features that are sets[ZKR+17].
You may notice that the pooling and readouts both use permutation invariant functions. Thus, DeepSets can be used for
pooling and attention could be used for readouts.

8.9.1 Intensive vs Extensive

One important consideration of a readout in regression is if your labels are intensive or extensive. An intensive label is
one whose value is independent of the number of nodes (or atoms). For example, the index of refraction or solubility are
intensive. The readout for an intensive label should (generally) be independent of the number of a nodes/atoms. So the
reduction in the readout could be a mean or max, but not a sum. In contrast, an extensive label should (generally) use a
sum for the reduction in the readout. An example of an extensive molecular property is enthalpy of formation.

8.10 Battaglia General Equations

As you can see, message passing layers is a general way to view GNN layers. Battaglia et al. [BHB+18] went further
and created a general set of equations which captures nearly all GNNs. They broke the GNN layer equations down into
3 update equations, like the node update equation we saw in the message passing layer equations, and 3 aggregation
equations (6 total equations). There is a new concept in these equations: graph feature vectors. Instead of having two
parts to your network (GNN then readout), a graph level feature is updated at every GNN layer. The graph feature vector
is a set of features which represent the whole graph or molecule. For example, when computing solubility it may have
been useful to build up a per-molecule feature vector that is eventually used to compute solubility instead of having the
readout. Any kind of per-molecule quantity, like energy, should be predicted with the graph-level feature vector.
The first step in these equations is updating the edge feature vectors, written as ⃗𝑒𝑘, which we haven’t seen yet:

⃗𝑒′
𝑘 = 𝜙𝑒 ( ⃗𝑒𝑘, ⃗𝑣𝑟𝑘, ⃗𝑣𝑠𝑘, �⃗�) (8.8)

where ⃗𝑒𝑘 is the feature vector of edge 𝑘, ⃗𝑣𝑟𝑘 is the receiving node feature vector for edge 𝑘, ⃗𝑣𝑠𝑘 is the sending node feature
vector for edge 𝑘, �⃗� is the graph feature vector, and 𝜙𝑒 is one of the three update functions that the define the GNN layer.
Note that these are meant to be general expressions and you define 𝜙𝑒 for your specific GNN layer.
Our molecular graphs are undirected, so how do we decide which node is receiving ⃗𝑣𝑟𝑘 and which node is sending ⃗𝑣𝑠𝑘?
The individual ⃗𝑒′

𝑘 are aggregated in the next step as all the inputs into node 𝑣𝑟𝑘. In our molecular graph, all bonds are both
“inputs” and “outputs” from an atom (how else could it be?), so it makes sense to just view every bond as two directed
edges: a C-H bond has an edge from C to H and an edge from H to C. In fact, our adjacency matrices already reflect
that. There are two non-zero elements in them for each bond: one for C to H and one for H to C. Back to the original
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question, what is ⃗𝑣𝑟𝑘 and ⃗𝑣𝑠𝑘? We consider every element in the adjacency matrix (every 𝑘) and when we’re on element
𝑘 = {𝑖𝑗}, which is 𝐴𝑖𝑗, then the receiving node is 𝑗 and the sending node is 𝑖. When we consider the companion edge
𝐴𝑗𝑖, the receiving node is 𝑖 and the sending node is 𝑗.

⃗𝑒′
𝑘 is like the message from the GCN. Except it’s more general: it can depend on the receiving node and the graph feature
vector �⃗�. The metaphor of a “message” doesn’t quite apply, since a message cannot be affected by the receiver. Anyway,
the new edge updates are then aggregated with the first aggregation function:

̄𝑒′
𝑖 = 𝜌𝑒→𝑣 (𝐸′

𝑖) (8.9)

where 𝜌𝑒→𝑣 is our defined function and 𝐸′
𝑖 represents stacking all ⃗𝑒′

𝑘 from edges into node i. Having our aggregated
edges, we can compute the node update:

⃗𝑣′
𝑖 = 𝜙𝑣 ( ̄𝑒′

𝑖, ⃗𝑣𝑖, �⃗�) (8.10)

This concludes the usual steps of a GNN layer because we have new nodes and new edges. If you are updating the graph
features (�⃗�), the following additional steps may be defined:

̄𝑒′ = 𝜌𝑒→𝑢 (𝐸′) (8.11)

This equation aggregates all messages/aggregated edges across the whole graph. Then we can aggregate the new nodes
across the whole graph:

̄𝑣′ = 𝜌𝑣→𝑢 (𝑉 ′) (8.12)

Finally, we can compute the update to the graph feature vector as:

�⃗�′ = 𝜙𝑢 ( ̄𝑒′ , ̄𝑣′ , �⃗�) (8.13)

8.10.1 Reformulating GCN into Battaglia equations

Let’s see how the GCN is presented in this form. We first compute our neighbor messages for all possible neighbors using
(8.8). Remember in the GCN, messages only depend on the senders.

Even though we use the “edge update” function, remember in a GCN we ignore the edge features. We only care edges
for defining the connectivity of the graph.

⃗𝑒′
𝑘 = 𝜙𝑒 ( ⃗𝑒𝑘, ⃗𝑣𝑟𝑘, ⃗𝑣𝑠𝑘, �⃗�) = ⃗𝑣𝑠𝑘W

To aggregate our messages coming into node 𝑖 in (8.9), we average them.

̄𝑒′
𝑖 = 𝜌𝑒→𝑣 (𝐸′

𝑖) = 1
|𝐸′

𝑖 |
∑ 𝐸′

𝑖

Our node update is then the activation (8.10)

⃗𝑣′
𝑖 = 𝜙𝑣 ( ̄𝑒′

𝑖, ⃗𝑣𝑖, �⃗�) = 𝜎( ̄𝑒′
𝑖)

we could include the self-loop above using 𝜎( ̄𝑒′
𝑖 + ⃗𝑣𝑖). The other functions are not used in a GCN, so those three

completely define the GCN.
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8.11 The SchNet Architecture

One of the earliest and most popular GNNs is the SchNet network [SchuttSK+18]. It wasn’t really recognized at publi-
cation time as a GNN, but its now recognized as one and you’ll see it often used as a baseline model. A baseline model
is a well-accepted and accurate model that is compared with.

Baseline Models

A common piece of wisdom is if you want to solve a real problem with deep learning, you should read the most recent
popular paper in an area and use the baseline they compare against instead of their proposed model. The reason is that
a baseline model usually must be easy, fast, and well-tested, which is generally more important than being the most
accurate

SchNet is for atoms represented as xyz coordinates (points) – not as a molecular graph. All our previous examples used the
underlying molecular graph as the input. In SchNet we will convert our xyz coodinates into a graph, so that we can apply
a GNNN. SchNet was developed for predicting energies and forces from atom configurations without bond information.
Thus, we need to first see how a set of atoms and their positions is converted into a graph. To get the nodes, we do a
similar process as above and the atomic number is passed through an embedding layer, which is just means we assign a
trainable vector to each atomic number (See Standard Layers for a review of embeddings).
Getting the adjacency matrix is simple too: we just make every atom be connected to every atom. It might seem confusing
what the point of using a GNN is, if we’re just connecting everything. It is because GNNs are permutation equivariant. If
we tried to do learning on the atoms as xyz coordinates, we would have weights depending on the ordering of atoms and
probably fail to handle different numbers of atoms.
There is one more missing detail: where do the xyz coordinates go? We make the model depend on xyz coordinates by
constructing the edge features from the xyz coordinates. The edge ⃗𝑒 between atoms 𝑖 and 𝑗 is computed purely from their
distance 𝑟:

𝑒𝑘 = exp (−𝛾 (𝑟 − 𝜇𝑘)2) (8.14)

where 𝛾 is a hyperparameter (e.g., 10Å) and 𝜇𝑘 is an equally-space grid of scalars - like [0, 5, 10, 15 , 20].
The purpose of (8.14) is similar to turning a category feature like atomic number or covalent bond type into a one-hot
vector. We cannot do a one-hot vector though, because there is an infinite number of possible distances. Thus, we have
a kind of “smoothing” that gives us a pseudo one-hot for distance. Let’s see an example to get a sense of it:

gamma = 1
mu = np.linspace(0, 10, 5)

def rbf(r):
return np.exp(-gamma * (r - mu) ** 2)

print("input", 2)
print("output", np.round(rbf(2), 2))

input 2
output [0.02 0.78 0. 0. 0. ]

You can see that a distance of 𝑟 = 2 gives a vector with most of the activation for the 𝑘 = 1 position - which corresponds
to 𝜇1 = 2.
We have our nodes and edges and are close to defining the GNN update equations. We need a bit more notation. I’m
going to use ℎ( ⃗𝑥) to indicate a multilayer perceptron (MLP) – basically a 1 to 2 dense layers neural network. The exact
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number of dense layers and when/where activation is used in these MLPs will be defined in the implementation, because
it is not so important for understanding. Recall, the definition of a dense layer is

ℎ( ⃗𝑥) = 𝜎 (𝑊𝑥 + 𝑏)

We’ll also use a different activation function 𝜎 called “shifted softplus” in SchNet: ln (0.5𝑒𝑥 + 0.5). You can see 𝜎(𝑥)
compared with the usual ReLU activation in Fig. 8.4. The rationale for using shifted softplus is that it is smooth with-
respect to its input, so it could be used to compute forces in a molecular dynamics simulation which requires taking smooth
derivatives with respect to pairwise distances.

Fig. 8.4: Comparison of the usual ReLU activation function and the shifted softplus used in the SchNet model.

Now, the GNN equations! The edge update equation (8.8) is composed of two pieces. First, we run the incoming edge
feature through an MLP and the atoms through an MLP. Then the result is run through an MLP:

⃗𝑒′
𝑘 = 𝜙𝑒 ( ⃗𝑒𝑘, ⃗𝑣𝑟𝑘, ⃗𝑣𝑠𝑘, �⃗�) = ℎ1 ( ⃗𝑣𝑠𝑘) ⋅ ℎ2 ( ⃗𝑒𝑘)

The next equation is the edge aggregation equation, (8.9). For SchNet, the edge aggregation is a sum over the neighbor
atom features.

̄𝑒′
𝑖 = ∑ 𝐸′

𝑖

Finally, the node update equation for SchNet is:

⃗𝑣′
𝑖 = 𝜙𝑣 ( ̄𝑒′

𝑖, ⃗𝑣𝑖, �⃗�) = ⃗𝑣𝑖 + ℎ3 ( ̄𝑒′
𝑖)

The GNN updates are applied typically 3-6 times. Although we have an edge update equation, like in GCN we do not
actually override the edges and keep them the same at each layer. The original SchNet was for predicting energies and
forces, so a readout can be done using sum-pooling or any other strategy described above.
These are sometimes changed, but in the original SchNet paper ℎ1 is one dense layer without activation, ℎ2 is two dense
layers with activation, and ℎ3 is 2 dense layers with activation on the first and not the second.

What is SchNet?
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The key GNN feature of a SchNet-like GNN are (1) use edge & node features in the edge update (message construction):

⃗𝑒′
𝑘 = ℎ1( ⃗𝑣𝑠𝑘) ⋅ ℎ2( ⃗𝑒𝑘)

where ℎ𝑖()s are some trainable functions and (2) use a residue in the node update:

⃗𝑣′
𝑖 = ⃗𝑣𝑖 + ℎ3 ( ̄𝑒′

𝑖)

All the other details about how to featurize the edges, how deep ℎ𝑖 is, what activation to choose, how to readout, and how
to convert point clouds to graphs are about the specific SchNet model in [SchuttSK+18].

8.12 SchNet Example: Predicting Space Groups

Our next example will be a SchNet model that predict space groups of points. Identifying the space group of atoms is an
important part of crystal structure identification, and when doing simulations of crystallization. Our SchNet model will
take as input points and output the predicted space group. This is a classification problem; specifically it is multi-class
becase a set of points should only be in one space group. To simplify our plots and analysis, we will work in 2D where
there are 17 possible space groups.
Our data for this is a set of points from various point groups. The features are xyz coordinates and the label is the space
group. We will not have multiple atom types for this problem. The hidden cell below loads the data and reshapes it for
the example.
Let’s take a look at a few examples from the dataset

The Data
This data was generated from [CW22] and all points are constrained to match the space group exactly during a molecular
dynamics simulation. The trajectories were NPT with a positive pressure and followed the procedure in that paper for
Figure 2. The force field is Lennard-Jones with 𝜎 = 1 and 𝜖 = 1

fig, axs = plt.subplots(4, 5, figsize=(12, 8))
axs = axs.flatten()

# get a few example and plot them
for i, (x, y) in enumerate(data):

if i == 20:
break

axs[i].plot(x[:, 0], x[:, 1], ".")
axs[i].set_title(label_str[y.numpy()])
axs[i].axis("off")
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You can see that there is a variable number of points and a few examples for each space group. The goal is to infer those
titles on the plot from the points alone.

8.12.1 Building the graphs

We now need to build the graphs for the points. The nodes are all identical - so they can just be 1s (we’ll reserve 0 in
case we want to mask or pad at some point in the future). As described in the SchNet section above, the edges should
be distance to every other atom. In most implementations of SchNet, we practically add a cut-off on either distance or
maximum degree (edges per node). We’ll do maximum degree for this work of 16.
I have a function below that is a bit sophisticated. It takes a matrix of point positions in arbitrary dimension and returns
the distances and indices to the nearest k neighbors - exactly what we need. It uses some tricks from Tensors and Shapes.
However, it is not so important for you to understand this function. Just know it takes in points and gives us the edge
features and edge nodes.

# this decorator speeds up the function by "compiling" it (tracing it)
# to run efficienty
@tf.function(

reduce_retracing=True,
)
def get_edges(positions, NN, sorted=True):

M = tf.shape(input=positions)[0]
# adjust NN
NN = tf.minimum(NN, M)
qexpand = tf.expand_dims(positions, 1) # one column
qTexpand = tf.expand_dims(positions, 0) # one row
# repeat it to make matrix of all positions

(continues on next page)
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(continued from previous page)

qtile = tf.tile(qexpand, [1, M, 1])
qTtile = tf.tile(qTexpand, [M, 1, 1])
# subtract them to get distance matrix
dist_mat = qTtile - qtile
# mask distance matrix to remove zros (self-interactions)
dist = tf.norm(tensor=dist_mat, axis=2)
mask = dist >= 5e-4
mask_cast = tf.cast(mask, dtype=dist.dtype)
# make masked things be really far
dist_mat_r = dist * mask_cast + (1 - mask_cast) * 1000
topk = tf.math.top_k(-dist_mat_r, k=NN, sorted=sorted)
return -topk.values, topk.indices

Let’s see how this function works by showing the connections between points in one of our examples. I’ve hidden the
code below. It shows some point’s neighbors and connects them so you can get a sense of how a set of points is converted
into a graph. The complete graph will have all points’ neighborhoods.

We will now add this function and the edge featurization of SchNet (8.14) to get the graphs for the GNN steps.

MAX_DEGREE = 16
EDGE_FEATURES = 8
MAX_R = 20

gamma = 1
mu = np.linspace(0, MAX_R, EDGE_FEATURES)

(continues on next page)
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def rbf(r):
return tf.exp(-gamma * (r[..., tf.newaxis] - mu) ** 2)

def make_graph(x, y):
edge_r, edge_i = get_edges(x, MAX_DEGREE)
edge_features = rbf(edge_r)
return (tf.ones(tf.shape(x)[0], dtype=tf.int32), edge_features, edge_i), y[None]

graph_train_data = train_data.map(make_graph)
graph_val_data = val_data.map(make_graph)
graph_test_data = test_data.map(make_graph)

Let’s examine one graph to see what it looks like. We’ll slice out only the first nodes.

for (n, e, nn), y in graph_train_data:
print("first node:", n[1].numpy())
print("first node, first edge features:", e[1, 1].numpy())
print("first node, all neighbors", nn[1].numpy())
print("label", y.numpy())
break

first node: 1
first node, first edge features: [2.6852989e-01 5.3621467e-02 8.6928348e-10 1.

↪1441063e-24 0.0000000e+00
0.0000000e+00 0.0000000e+00 0.0000000e+00]

first node, all neighbors [143 8 145 3 10 106 207 202 150 196 204 191 214 149␣
↪159 203]

label [15]

8.12.2 Implementing the MLPs

Now we can implement the SchNet model! Let’s start with the ℎ1, ℎ2, ℎ3 MLPs that are used in the GNN update
equations. In the SchNet paper these each had different numbers of layers and different decisions about which layers had
activation. Let’s create them now.

def ssp(x):
# shifted softplus activation
return tf.math.log(0.5 * tf.math.exp(x) + 0.5)

def make_h1(units):
return tf.keras.Sequential([tf.keras.layers.Dense(units)])

def make_h2(units):
return tf.keras.Sequential(

[
tf.keras.layers.Dense(units, activation=ssp),
tf.keras.layers.Dense(units, activation=ssp),

]
)

(continues on next page)
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def make_h3(units):
return tf.keras.Sequential(

[tf.keras.layers.Dense(units, activation=ssp), tf.keras.layers.Dense(units)]
)

One detail that can be missed is that the weights in each MLP should change in each layer of SchNet. Thus, we’ve written
the functions above to always return a new MLP. This means that a new set of trainable weights is generated on each call,
meaning there is no way we could erroneously have the same weights in multiple layers.

8.12.3 Implementing the GNN

Now we have all the pieces to make the GNN. This code will be very similar to the GCN example above, except we now
have edge features. One more detail is that our readout will be an MLP as well, following the SchNet paper. The only
change we’ll make is that we want our output property to be (1) multi-class classification and (2) intensive (independent of
number of atoms). So we’ll end with an average (intensive) and end with an output vector of logits the size of our labels.

class SchNetModel(tf.keras.Model):
"""Implementation of SchNet Model"""

def __init__(self, gnn_blocks, channels, label_dim, **kwargs):
super(SchNetModel, self).__init__(**kwargs)
self.gnn_blocks = gnn_blocks

# build our layers
self.embedding = tf.keras.layers.Embedding(2, channels)
self.h1s = [make_h1(channels) for _ in range(self.gnn_blocks)]
self.h2s = [make_h2(channels) for _ in range(self.gnn_blocks)]
self.h3s = [make_h3(channels) for _ in range(self.gnn_blocks)]
self.readout_l1 = tf.keras.layers.Dense(channels // 2, activation=ssp)
self.readout_l2 = tf.keras.layers.Dense(label_dim)

def call(self, inputs):
nodes, edge_features, edge_i = inputs
# turn node types as index to features
nodes = self.embedding(nodes)
for i in range(self.gnn_blocks):

# get the node features per edge
v_sk = tf.gather(nodes, edge_i)
e_k = self.h1s[i](v_sk) * self.h2s[i](edge_features)
e_i = tf.reduce_sum(e_k, axis=1)
nodes += self.h3s[i](e_i)

# readout now
nodes = self.readout_l1(nodes)
nodes = self.readout_l2(nodes)
return tf.reduce_mean(nodes, axis=0)

Remember that the key attributes of a SchNet GNN are the way that we use edge and node features. We can see the
mixing of these two in the key line for computing the edge update (computing message values):

e_k = self.h1s[i](v_sk) * self.h2s[i](edge_features)

followed by aggregation of the edges updates (pooling messages):
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e_i = tf.reduce_sum(e_k, axis=1)

and the node update

nodes += self.h3s[i](e_i)

Also of note is how we go from node features to multi-classs. We use dense layers that get the shape per-node into the
number of classes

self.readout_l1 = tf.keras.layers.Dense(channels // 2, activation=ssp)
self.readout_l2 = tf.keras.layers.Dense(label_dim)

and then we take the average over all nodes

return tf.reduce_mean(nodes, axis=0)

Let’s give now use the model on some data.

small_schnet = SchNetModel(3, 32, len(label_str))

for x, y in graph_train_data:
yhat = small_schnet(x)
break

print(yhat.numpy())

[ 0.00088388 0.00248148 0.01214652 0.0182933 -0.01964691 0.02274201
0.02244076 0.01095641 -0.00631071 -0.02765592 -0.01235985 0.00388999
0.01020311 0.00122206 0.00579039 -0.01482926 -0.00617345]

The output is the correct shape and remember it is logits. To get a class prediction that sums to probability 1, we need to
use a softmax:

print("predicted class", tf.nn.softmax(yhat).numpy())

predicted class [0.05878644 0.05888043 0.05945227 0.05981884 0.05759181 0.06008555
0.06006745 0.05938156 0.05836501 0.0571324 0.05801302 0.05896343
0.05933684 0.05880633 0.05907559 0.05786994 0.05837303]

8.12.4 Training

Great! It is untrained though. Now we can set-up training. Our loss will be cross-entropy from logits, but we need to be
careful on the form. Our labels are integers - which is called “sparse” labels because they are not full one-hots. Mult-class
classification is also known as categorical classification. Thus, the loss we want is sparse categorical cross entropy from
logits.

small_schnet.compile(
optimizer=tf.keras.optimizers.Adam(1e-4),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

(continues on next page)
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metrics="sparse_categorical_accuracy",
)
result = small_schnet.fit(graph_train_data, validation_data=graph_val_data, epochs=20)

plt.plot(result.history["sparse_categorical_accuracy"], label="training accuracy")
plt.plot(result.history["val_sparse_categorical_accuracy"], label="validation accuracy

↪")
plt.axhline(y=1 / 17, linestyle="--", label="random")
plt.legend()
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.show()

The accuracy is not great, but it looks like we could keep training. We have a very small SchNet here. Standard SchNet
described in [SchuttSK+18] uses 6 layers and 64 channels and 300 edge features. We have 3 layers and 32 channels.
Nevertheless, we’re able to get some learning. Let’s visually see what’s going on with the trained model on some test data

fig, axs = plt.subplots(4, 5, figsize=(12, 8))
axs = axs.flatten()

for i, ((x, y), (gx, _)) in enumerate(zip(test_data, graph_test_data)):
if i == 20:

break
axs[i].plot(x[:, 0], x[:, 1], ".")
yhat = small_schnet(gx)
yhat_i = tf.math.argmax(tf.nn.softmax(yhat)).numpy()
axs[i].set_title(f"True: {label_str[y.numpy()]}\nPredicted: {label_str[yhat_i]}")
axs[i].axis("off")

plt.tight_layout()
plt.show()
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We’ll revisit this example later! One unique fact about this dataset is that it is synthetic, meaning there is no label noise.
As discussed in Regression & Model Assessment, that removes the possibility of overfitting and leads us to favor high
variance models. The goal of teaching a model to predict space groups is to apply it on real simulations or microscopy
data, which will certainly have noise. We could have mimicked this by adding noise to the labels in the data and/or by
randomly removing atoms to simulate defects. This would better help our model work in a real setting.

8.13 Current Research Directions

8.13.1 Common Architecture Motifs and Comparisons

We’ve now seenmessage passing layer GNNs, GCNs, GGNs, and the generalized Battaglia equations. You’ll find common
motifs in the architectures, like gating, Attention Layers, and pooling strategies. For example, Gated GNNS (GGNs) can
be combined with attention pooling to create Gated Attention GNNs (GAANs)[ZSX+18]. GraphSAGE is a similar to
a GCN but it samples when pooling, making the neighbor-updates of fixed dimension[HYL17]. So you’ll see the suffix
“sage” when you sample over neighbors while pooling. These can all be represented in the Battaglia equations, but you
should be aware of these names.
The enormous variety of architectures has led to work on identifying the “best” or most general GNN architecture
[DJL+20, EPBM19, SMBGunnemann18]. Unfortunately, the question of which GNN architecture is best is as difficult
as “what benchmark problems are best?” Thus there are no agreed-upon conclusions on the best architecture. However,
those papers are great resources on training, hyperparameters, and reasonable starting guesses and I highly recommend
reading them before designing your own GNN. There has been some theoretical work to show that simple architectures,
like GCNs, cannot distinguish between certain simple graphs [XHLJ18]. How much this practically matters depends on
your data. Ultimately, there is so much variety in hyperparameters, data equivariances, and training decisions that you
should think carefully about how much the GNN architecture matters before exploring it with too much depth.
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8.13.2 Nodes vs Edges

You’ll find that most GNNs use the node-update equation in the Battaglia equations but do not update edges. For example,
the GCN will update nodes at each layer but the edges are constant. Some recent work has shown that updating edges
can be important for learning when the edges have geometric information, like if the input graph is a molecule and the
edges are distance between the atoms [KGrossGunnemann20]. As we’ll see in the chapter on equivariances (Input Data
& Equivariances), one of the key properties of neural networks with point clouds (i.e., Cartesian xyz coordinates) is to
have rotation equivariance. [KGrossGunnemann20] showed that you can achieve this if you do edge updates and encode
the edge vectors using a rotation equivariant basis set with spherical harmonics and Bessel functions. These kind of edge
updating GNNs can be used to predict protein structure [JES+20].

8.13.3 Beyond Message Passing

One of the common themes of GNN research is moving “beyond message passing,” where message passing is the message
construction, aggregation, and node update with messages. Some view this as impossible – claiming that all GNNs can be
recast as message passing [Velivckovic22]. Another direction is on disconnecting the underlying graph being input to the
GNN and the graph used to compute updates. We sort of saw this above with SchNet, where we restricted the maximum
degree for the message passing. More useful are ideas like “lifting” the graphs into more structured objects like simplicial
complexes [BFO+21]. Finally, you can also choose where to send the messages beyond just neighbors [TZK21]. For
example, all nodes on a path could communicate messages or all nodes in a clique.

8.13.4 Do we need graphs?

It is possible to convert a graph into a string if you’re working with an adjacency matrix without continuous values.
Molecules specifically can be converted into a string. This means you can use layers for sequences/strings (e.g., recurrent
neural networks or 1D convolutions) and avoid the complexities of a graph neural network. SMILES is one way to convert
molecular graphs into strings. With SMILES, you cannot predict a per-atom quantity and thus a graph neural network
is required for atom/bond labels. However, the choice is less clear for per-molecule properties like toxicity or solubility.
There is no consensus about if a graph or string/SMILES representation is better. SMILES can exceed certain graph neural
networks in accuracy on some tasks. SMILES is typically better on generative tasks. Graphs obviously beat SMILES in
label representations, because they have granularity of bonds/edges. We’ll see how to model SMILES in Deep Learning
on Sequences, but it is an open question of which is better.

8.14 Relevant Videos

8.14.1 Intro to GNNs

8.14.2 Overview of GNN with Molecule, Compiler Examples

8.15 Chapter Summary

• Molecules can be represented by graphs by using one-hot encoded feature vectors that show the elemental identity
of each node (atom) and an adjacency matrix that show immediate neighbors (bonded atoms).

• Graph neural networks are a category of deep neural networks that have graphs as inputs.
• One of the early GNNs is the Kipf & Welling GCN. The input to the GCN is the node feature vector and the
adjacency matrix, and returns the updated node feature vector. The GCN is permutation invariant because it
averages over the neighbors.
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• A GCN can be viewed as a message-passing layer, in which we have senders and receivers. Messages are computed
from neighboring nodes, which when aggregated update that node.

• A gated graph neural network is a variant of the message passing layer, for which the nodes are updated according
to a gated recurrent unit function.

• The aggregation of messages is sometimes called pooling, for which there are multiple reduction operations.
• GNNs output a graph. To get a per-atom or per-molecule property, use a readout function. The readout depends
on if your property is intensive vs extensive

• The Battaglia equations encompasses almost all GNNs into a set of 6 update and aggregation equations.
• You can convert xyz coordinates into a graph and use a GNN like SchNet

8.16 Cited References
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CHAPTER

NINE

INPUT DATA & EQUIVARIANCES

Molecular graphs and structures (xyz coordinates) are the fundamental features in molecules and materials. As discussed,
often these are converted into molecular descriptors or some other representation. Why is that? Why can we not work
with the data directly? For example, let’s say we have a butane molecule and would like to predict its potential energy
from its position. You could train a linear model ̂𝐸 that predicts energy

̂𝐸 = XW + 𝑏 (9.1)

where X is 14 (atoms) × 3 (xyz coordinates) matrix containing positions andW, 𝑏 are trainable parameters. So far, this
is all reasonable. Now what if I translate all the coordinates by -10:

(X − 10)W + 𝑏 = X + 𝑏 − 10|W| (9.2)

We know the energy should not change if we translate all the coordinates equally – the molecule is not changing confor-
mations. However, our linear regression will change by −10|W|. We have accidentally made our model sensitive to the
origin of our coordinate system, which is not physical. This is translational variance – our model changes when we
translate the coordinates. I made this word up by the way; it’s just easier than saying “non-translational invariant.” We
want our models to be insensitive to this — translationally invariant.

Audience & Objectives
This chapter builds on Graph Neural Networks and a basic knowledge of linear algebra. After completing this chapter,
you should be able to

• Define invariance vs equivariance
• Define translation, rotation, and permutation equivariance
• Choose features that have desired invariances

Consider another example from our butane molecule. What if we swapped the order of the atoms in our Xmatrix. There
is no such thing as a “left” or “right” side of our molecule, so it should not matter. However, you’ll see that changing the
order of X changes which weights are multiplied and thus the predicted energy will change. This is called a permutation
variance. Our model changes if we re-order our inputs, even though from our knowledge of chemistry this should not
matter. Similarly, our output energy should not be sensitive to a rotation of the molecular coordinates. Namely they
should be permutation invariant and rotationally invariant.

You could teach your model to learn permutation variance of left/right in this example, either by making your training
data contain multiple orderings of X or somehow making your W be symmetric. You can accomplish this via data
augmentation. However, this is inefficient because the number of permutations you want to train the model to ignore
is combinatorially large.
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9.1 Equivariances

Models that work withmolecules should be permutation equivariant if they are outputting a per-atom or per-bond quantity.
Permutation equivariant means that if you rearrange the order of atoms, the output changes in the same way. For example,
if you’re predicting partial charge per atom ⃗𝑦 = 𝑓(X) where 𝑓(X) is our model function. If you rearrange X, you expect
the ⃗𝑦 to rearrange to match that. Let’s try to state this with an equation. Consider 𝒫34 to be the permutation operator. It
swaps indices 3 and 4 in axis 0 of a tensor. Then a permutation equivariant model equation should have:

𝑓 (𝒫𝑖𝑗 [X]) = 𝒫𝑖𝑗 [ ⃗𝑦] , ∀𝑖, 𝑗 (9.3)

where 𝑖, 𝑗 are indices of X (atom indices). For example, consider 𝑓(X) to predict partial charge given a molecule. If the
input is water, our input atoms could be arranged HOH and 𝑓(X) = (0.3, −0.6, 0.3). Now if we swap atoms 0 and 1,
our input is arranged OHH. If our function is permutation equivariant, then it should output 𝑓 (𝒫01 [X]) = 𝒫01 [ ⃗𝑦] =
(−0.6, 0.3, 0.3).
You can find a more general form of permutation equivariance in [TSK+18]. Now what happens if we output a scalar
like energy? Then our permutation operator does nothing:

𝑓 (𝒫𝑖𝑗 [X]) = 𝒫𝑖𝑗 [ ̂𝐸] = ̂𝐸 (9.4)

we call this case a permutation invariance.

The classic way to introduce equivariance is through group theory. Rather than teach group theory here, I’ll use simpler
equations that do not quite fully capture the ideas and power of equivariances but get the point across quickly.

Note: An invariance is special type of equivariance. If something is equivariant, you can easily make it invariant (e.g.,
averaging over your equivariant axes).

9.2 Equivariances of Coordinates

When we work with molecular coordinates as features we need to be a bit more careful in distinguishing between the
“features” that might be element identity and those which specify the location in space. This kind of data is referred to as
point clouds in computer science. Let’s break our features into ( ⃗𝑟, ⃗𝑥) where ⃗𝑟 is the location of the atom/point and ⃗𝑥 are
its features (e.g., element, charge, spin, etc.). Similarly, we may have labels at each point so that we write our labels as
( ⃗𝑟′, ⃗𝑦). The label might be direction ⃗𝑟′ and force magnitude 𝑦 or perhaps a field at ⃗𝑟′ with vectors ⃗𝑦. You may not have
⃗𝑟′ like if you’re predicting energy. It may be that ⃗𝑟 = ⃗𝑟′. With this notation, we can write out translation equivariance
as:

𝑓 ( ⃗𝑟 + ⃗𝑡, ⃗𝑥) = ( ⃗𝑟′ + ⃗𝑡, ⃗𝑦), ∀ ⃗𝑡 (9.5)
You can also write this out if you have a matrix of atom positions (like a molecule):

𝑓 (R + ⃗𝑡,X) = (R′ + ⃗𝑡, ⃗𝑦𝑖), ∀ ⃗𝑡 (9.6)

where \textbf{R} is the matrix of all position vectors \vec{r}_i. In the case that you do not have output coordinates ⃗𝑟′,
then it becomes:

𝑓 (R + ⃗𝑡,X) = ⃗𝑦𝑖, ∀ ⃗𝑡 (9.7)

which we call translation invariance. It’s important to note that these equations do not apply to some specific ⃗𝑡, but any
⃗𝑡.
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Rotational equivariance can be similarly defined. Consider ℛ to be a rotation operator (e.g., a quaternion). Then our
rotation equivariance equation is

𝑓 (ℛ [R] ,X) = (ℛ [R′] , ⃗𝑦𝑖), ∀ℛ (9.8)

an example might be again that (R′, ⃗𝑦𝑖) defines some field and our equivariance says that if we rotate our input points,
our output points will obey the same rotation. Again, we can also have rotation invariance if our model does not output
R′.

9.3 Constructing Equivariant Models

There has been some work to unify equivariances into a single “layer” type so that you can just pick what equivariances you
want like you would a hyperparameter [TSK+18, WGW+18]. The chapter Equivariant Neural Networks covers these and
a recent review may be found in [Est20]. A popular implementation is available here. A recent application in molecules
was in predicting dipole moments, a great example of where rotation invariance would fail because dipole moments should
rotate the same way when the molecule rotates[MGSNoe20].
If you do not need full equivariances, you can often use a data transformation to make the model invariant regardless
of its architecture. Some of the common transforms are summarized in the table below and you can find a much more
detailed discussion of data transformations in Musil et al. [MGB+21]. The list below omits data augmentation where you
try to teach your model these invariances through training — which is a common and effective strategy in image deep
learning. Alternatively, if your invariants are finite (e.g., only 90 degree rotations or you have small permutation invariant
sets) you can just apply each possible transformation (rotation/permutation) and average the results to make a quick and
easy invariant network[ZKR+17]. That is sometimes called test augmentation.

Data Transformation Equivariance
Matrix Determinant Permutation Invariance
Eigendecomposition Permutation Invariance
Reduction (sum, mean) Permutation Invariance
Pairwise Vector/Distance Translation/Rotation Invariance
Angles Translation/Rotation Invariance
Atom-centered Symmetry Functions Rotation/Translation Invariance
Trajectory Alignment Rotation/Translation Invariance
Molecular Descriptors All invariant

9.3.1 Matrix Determinant

A matrix determinant is not quite permutation invariant. If you swap two rows in a matrix, it makes the determinant
change signs. However, you can easily just square the determinant to remove the sign change. How would you use a
determinant in a model? It’s just a building block. You could build a matrix of all neighbor features in a molecular graph
and then do a determinant to arrive at a permutation invariant output. The determinant has two major disadvantages: (i)
it outputs a single number (not that expressive) and (ii) it’s really expensive 𝑂(𝑛3). Thus you won’t see a determinant too
frequently in deep learning.
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9.3.2 Eigendecomposition

The eigendecomposition is when you factorize a matrix into its eigenvalues and eigenvectors. The (sorted) eigenvalues
of a matrix are permutation invariant. Compared with the determinant, you get more eigenvalues from a matrix than
determinants so there is less loss of information. Computing eigenvalues is still expensive at 𝑂(𝑛3) and they are not
differentiable. Nevertheless, you will see this strategy in kernel learning where you do not need to propagate deriva-
tives through the kernel. One important application of this is in some of the early work on quantum machine learning
[RTMullerVL12].

9.3.3 Reductions

An obvious way to remove permutation variance is to just sum over the points or atoms. More generally, you can use any
kind of reduction like a mean or product. Like a determinant, this results in a single number or at least removal of an
axis. Reductions are fast and differentiable.

9.3.4 Pairwise Distance

Using pairwise distances or vectors is the standard solution to translation invariance. Rarely are we actually that concerned
with translational equivariance. If using pairwise vectors between atoms instead of the xyz coordinates, this naturally
removes the choice of origin and thus makes the model translation invariant. If we go further and use pairwise distance
instead of vectors, this also removes the effect of rotations giving a rotation invariance. This is fast, differentiable, and the
usual approach to add translation and rotation invariance.

9.3.5 Angles

Angles are rotation, translation, and scale invariant. You can define angles any way, but often they are done between
consecutive bonds (3 atoms total). Combining angles and pairwise distances (along bonds only) are called internal
coordinates.

9.3.6 Convolutional Layers

Convolutional layers are well-known to be translationally equivariant. Remember that they work in 3D as well, so they
can be an input layer if translational equivariance is desired. However, convolutions work on pixels or voxels in 3D, so
you must first bin your coordinates into a voxel grid. See Chew et al. for an example [CJZ+20].

9.3.7 Atom-centered Symmetry Functions

These are a large class of functions described by Behler[Beh11] that transform from the input coordinate/features (R,X)
to a new set of featuresX′ that obey rotational and translational symmetry. This makes them translational and rotationally
invariant. Behler didn’t propose a single function to get these features, but instead explored the choices and theory. Bartók
et al. [BartokKCsanyi13] provided a specific recipe which is called a SOAP descriptor. These are drop-in replacements
for (R,X) that are translation and rotation invariant but do not lose much information. They are differentiable, although
complex to implement.
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9.3.8 Trajectory Alignment

One special case is when your points are part of a time-dependent trajectory. This usually implies that the order of the
points does not change. Thus, we do not need to worry about permutation invariance. This is the case when analyzing
results from amolecular dynamics trajectory, like a dynamic simulation of a protein. One way to make our data translation
and rotation invariant in this case is to align it to some reference coordinates. For example, you could always make the
center of mass of the trajectory be at the origin. This will make the points translation invariant, because you always center
a new set of points. A natural question is if it must be the center of mass? No, because your points are permutation
invariant, you could just pick point 0 as the origin. Then if the points are translated, this will be undone when you move
the points such that point 0 is the origin. To be more precise, we always apply a centering function 𝑐 (R) that redefines
the origin before processing a set of points. We can also define a rotation function 𝑟 (R) that will be applied where we
align to some definite set of three Euler angles (two vectors). See the example below for this.

9.3.9 Molecular Descriptors

Molecular descriptors are the classic way to convert molecules into translation/rotation/permutation invariant features.
There exists 3D descriptors as well that can treat structure. They are also called fingerprints. Fingerprints is a broad
term for converting a molecular structure to a binary sequence. Commonly, each bit indicates the presence or absence
of a specific substructure. We won’t focus on these in this course because they are untrainable and choosing the correct
combination of descriptors is an unsolved problem which has no clear process.

9.4 Examples

Let’s demonstrate with some code how to go about creating functions that obey these equivariances. We won’t be training
these models because training has no effect on equivariances, but you should train your models if you’re doing learning

There are ways to make training enforce equivariances[RSPoczos17], but it’s a somewhat complex and rarely used
strategy. This is different than data augmentation, where we hope it learns these.

I’ll define my butane molecule as a set of coordinatesR𝑖 and featuresX𝑖. My features are just one-hot vectors indicating if
a particular point is a carbon atom [1, 0] or a hydrogen atom [0, 1]. In our example, we will just be interested in predicting
energy. We will not train our models, so the energy will not be accurate.

9.5 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages.

Tip: To install packages, execute this code in a new cell.

!pip install dmol-book

If you find install problems, you can get the latest working versions of packages used in this book here

9.4. Examples 157

https://github.com/whitead/dmol-book/blob/master/package/requirements.txt


Deep Learning for Molecules and Materials

9.5.1 No equivariances

A one-hidden layer dense neural network is an example of a model with no equivariances. To fit our data into this dense
layer, we’ll just stack the positions and features into a large input tensor and output energy. We’ll use a tanh as activation,
16 hidden layer dimension, and our output layer has no activation because we’re doing regression to energy. Our weights
will always be randomly initialized.

# our 1-hidden layer model
def hidden_model(r, x, w1, w2, b1, b2):

# stack into one large input
i = np.concatenate((r, x), axis=1).flatten()
v = np.tanh(i @ w1 + b1)
v = v @ w2 + b2
return v

# initialize our weights
w1 = np.random.normal(size=(N * 5, 16)) # 5 -> 3 xyz + 2 features
b1 = np.random.normal(size=(16,))
w2 = np.random.normal(size=(16,))
b2 = np.random.normal()

Let’s see what the predicted energy is with our coordinates.

hidden_model(R_i, X_i, w1, w2, b1, b2)

2.2814890918459536

This is not trained, so we aren’t that concerned about the value. Now let’s see if our model is sensitive to translation.

hidden_model(R_i + np.array([1, 2, 3]), X_i, w1, w2, b1, b2)

-2.79306064480369

As expected, it is sensitive to translation. I added the vector (1, 2, 3) to all input points and the energy changed. This
model is not translation invariant. The choice of (1, 2, 3) is arbitrary, the model should not change output regardless
of the choice of the translation vector if the model is translation invariant. Rotations can be done using the scipy.
transformation library which takes care of some of the messiness of working with quaternions, which are the
operators that perform rotations.

import scipy.spatial.transform as trans

# rotate around x coord by 45 degrees
rot = trans.Rotation.from_euler("x", 45, degrees=True)

print("No rotation", hidden_model(R_i, X_i, w1, w2, b1, b2))
print("Rotated", hidden_model(rot.apply(R_i), X_i, w1, w2, b1, b2))

No rotation 2.2814890918459536
Rotated -0.7302631811530622

Our model is affected by the rotation, meaning it is not rotation invariant. Permutation invariance comes from swapping
indices.
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# swap 0, 1 rows
perm_R_i = np.copy(R_i)
perm_R_i[0], perm_R_i[1] = R_i[1], R_i[0]
# we do not need to swap X_i 0,1 because they are identical

print("original", hidden_model(R_i, X_i, w1, w2, b1, b2))
print("permuted", hidden_model(perm_R_i, X_i, w1, w2, b1, b2))

original 2.2814890918459536
permuted 0.0609968150217437

Our model is not permutation invariant!

9.5.2 Permutation Invariant

We will use a reduction to achieve permutation invariance. All that is needed is to ensure that weights are not a function
of our atom number axis and then do a reduction (sum) prior to the output layer. Here is the implementation.

# our 1-hidden layer model with perm inv
def hidden_model_pi(r, x, w1, w2, b1, b2):

# stack into one large input
i = np.concatenate((r, x), axis=1)
v = np.tanh(i @ w1 + b1)
# reduction
v = np.sum(v, axis=0)
v = v @ w2 + b2
return v

# initialize our weights
w1 = np.random.normal(size=(5, 16)) # note it no lonegr has N!
b1 = np.random.normal(size=(16,))
w2 = np.random.normal(size=(16,))
b2 = np.random.normal()

We made three changes: we kept the atom axis (no more flatten), we removed the atom axis after the hidden layer
(sum), and we made our weights not depend on the atom axis. Now let’s observe if this is indeed permutation invariant.

print("original", hidden_model_pi(R_i, X_i, w1, w2, b1, b2))
print("permuted", hidden_model_pi(perm_R_i, X_i, w1, w2, b1, b2))

original -3.61539748295704
permuted -3.61539748295704

It is!
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9.5.3 Translation Invariant

The next change we will make is to convert our𝑁 ×3 shaped coordinates into𝑁 ×𝑁 ×3 pairwise vectors. This gives us
translation invariance. This causes an issue because our distance features went from being 3 per atom to 𝑁 × 3 per atom.
Thus we’ve introduced a dependence on atom number in our distance features and that means it’s easy to accidentally
break our permutation invariance. We can just sum over this new axis though. Let’s see an implementation:

# our 1-hidden layer model with perm inv, trans inv
def hidden_model_pti(r, x, w1, w2, b1, b2):

# compute pairwise distances using broadcasting
d = r - r[:, np.newaxis]
# stack into one large input of N x N x 5
# concatenate doesn't broadcast, so I manually broadcast the Nx2 x matrix
# into N x N x 2
i = np.concatenate((d, np.broadcast_to(x, (d.shape[:-1] + x.shape[-1:]))), axis=-

↪1)
v = np.tanh(i @ w1 + b1)
# reduction over both axes
v = np.sum(v, axis=(0, 1))
v = v @ w2 + b2
return v

print("original", hidden_model_pti(R_i, X_i, w1, w2, b1, b2))
print("permuted", hidden_model_pti(perm_R_i, X_i, w1, w2, b1, b2))
print("translated", hidden_model_pti(R_i + np.array([-2, 3, 4]), X_i, w1, w2, b1, b2))
print("rotated", hidden_model_pti(rot.apply(R_i), X_i, w1, w2, b1, b2))

original -30.794047959277147
permuted -30.794047959277126
translated -30.79404795927714
rotated -28.389440679751605

It is now translation and permutation invariant. But not yet rotation invariant.

9.5.4 Rotation Invariant

It is a simple change to make it rotationally invariant. We just convert the pairwise vectors into pairwise distances. We’ll
use squared distances for simplicity.

# our 1-hidden layer model with perm, trans, rot inv.
def hidden_model_ptri(r, x, w1, w2, b1, b2):

# compute pairwise distances using broadcasting
d = r - r[:, np.newaxis]
# x^2 + y^2 + z^2 of pairwise vectors
# keepdims so we get an N x N x 1 output
d2 = np.sum(d**2, axis=-1, keepdims=True)
# stack into one large input of N x N x 3
# concatenate doesn't broadcast, so I manually broadcast the Nx2 x matrix
# into N x N x 2
i = np.concatenate(

(d2, np.broadcast_to(x, (d2.shape[:-1] + x.shape[-1:]))), axis=-1
)
v = np.tanh(i @ w1 + b1)
# reduction over both axes

(continues on next page)
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(continued from previous page)

v = np.sum(v, axis=(0, 1))
v = v @ w2 + b2
return v

# initialize our weights
w1 = np.random.normal(size=(3, 16)) # now just 1 dist feature
b1 = np.random.normal(size=(16,))
w2 = np.random.normal(size=(16,))
b2 = np.random.normal()

# test it

print("original", hidden_model_ptri(R_i, X_i, w1, w2, b1, b2))
print("permuted", hidden_model_ptri(perm_R_i, X_i, w1, w2, b1, b2))
print("translated", hidden_model_ptri(R_i + np.array([-2, 3, 4]), X_i, w1, w2, b1,␣

↪b2))
print("rotated", hidden_model_ptri(rot.apply(R_i), X_i, w1, w2, b1, b2))

original 358.2899463342588
permuted 358.28994633425873
translated 358.2899463342588
rotated 358.2899463342588

We have achieved our invariances! Remember that you could use different choices to achieve these invariances. Also,
you may not want an invariance sometimes. You may want equivariances or are not concerned at all. For example, if
you’re always working with one molecule you may never need to switch around atom orders.
Finally as a sanity check, let’s make sure that if we change the coordinates our predicted energy changes.

R_i[0] = 2.0
print("changed", hidden_model_ptri(R_i, X_i, w1, w2, b1, b2))

changed 380.9895875398029

Our model is still sensitive to the input features

9.6 Trajectory Alignment Example

As described above, if you’re working with a trajectory there is no requirement to have permutation equivariance. To
achieve translation and rotation invariance, we can align to some fixed points that will be present in all structures (like
center of mass). As we’ll see below, trajectory alignment is fraught with issues like rotation ambiguities, unphysical
rotations, and creating fictitious covariances between far away points due to alignment. Internal coordinates (pairwise
dist, angles) are almost always better. However, trajectory alignment has good scaling properties.
The movie below shows an example trajectory that we’ll examine. I’ve made it 2D to make it simple to visualize, but the
same principles apply to 3D.
Let’s start by loading the trajectory and defining/testing our centering function. The trajectory is a tensor that is shape
time, point number, xy -> (2048, 12, 2). I’ll examine two centering functions: align to center of mass
and align to point 0 to see what the two look like.
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urllib.request.urlretrieve(
"https://github.com/whitead/dmol-book/raw/master/data/paths.npz", "paths.npz"

)
paths = np.load("paths.npz")["arr"]
# plot the first point
plt.title("First Frame")
plt.plot(paths[0, :, 0], paths[0, :, 1], "o-")
plt.xticks([])
plt.yticks([])
plt.show()

def center_com(paths):
"""Align paths to COM at each frame"""
coms = np.mean(paths, axis=-2, keepdims=True)
return paths - coms

def center_point(paths):
"""Align paths to particle 0"""
return paths - paths[:, :1]

ccpaths = center_com(paths)
cppaths = center_point(paths)

To compare, we’ll draw a sample of frames on top of one another to see the now translationally invariant coordinates.

fig, axs = plt.subplots(ncols=3, squeeze=True, figsize=(16, 4))

axs[0].set_title("No Center")
axs[1].set_title("COM Center")
axs[2].set_title("Point 0 Center")
cmap = plt.get_cmap("cool")
for i in range(0, 2048, 16):

axs[0].plot(paths[i, :, 0], paths[i, :, 1], ".-", alpha=0.2, color=cmap(i / 2048))

(continues on next page)
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(continued from previous page)

axs[1].plot(
ccpaths[i, :, 0], ccpaths[i, :, 1], ".-", alpha=0.2, color=cmap(i / 2048)

)
axs[2].plot(

cppaths[i, :, 0], cppaths[i, :, 1], ".-", alpha=0.2, color=cmap(i / 2048)
)

for i in range(3):
axs[i].set_xticks([])
axs[i].set_yticks([])

The color indicates time. You can see that having no alignment makes the spatial coordinates depend on time implicitly
because the points drift over time. Both aligning to COM or point 0 removes this effect. The COM implicitly removes 2
degrees of freedom. Point 0 alignment makes point 0 have no variance (also remove degrees of freedom), which could
affect how you design or interpret your model.
Now we will align by rotation. We need to define a unique rotation. A simple way is to choose 1 (or 2 in 3D) vectors that
define our coordinate system directions. For example, we could choose that the vector from point 0 to point 1 defines the
positive direction of the x-axis. A more sophisticated way is to find the principal axes of our points and align along these.
For 2D, we only need to align to one of them. Again, this implicitly removes a degree of freedom. We will examine both.
Computing principle axes requires an eigenvalue decomposition, so it’s a bit more numerically intense [FR00].

Warning: For all rotation alignment methods, you must have already centered the points.

def make_2drot(angle):
mats = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])
# swap so batch axis is first
return np.swapaxes(mats, 0, -1)

def align_point(paths):
"""Align to 0-1 vector assuming 2D data"""
vecs = paths[:, 0, :] - paths[:, 1, :]
# find angle to rotate so these are pointed towards pos x
cur_angle = np.arctan2(vecs[:, 1], vecs[:, 0])
rot_angle = -cur_angle
rot_mat = make_2drot(rot_angle)
# to mat mult at each frame
return paths @ rot_mat

def find_principle_axis(points, naxis=2):
"""Compute single principle axis for points"""

(continues on next page)
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(continued from previous page)

inertia = points.T @ points
evals, evecs = np.linalg.eig(inertia)
order = np.argsort(evals)[::-1]
# return largest vectors
return evecs[:, order[:naxis]].T

def align_principle(paths, axis_finder=find_principle_axis):
# someone should tell me how to vectorize this in numpy
vecs = [axis_finder(p) for p in paths]
vecs = np.array(vecs)
# find angle to rotate so these are pointed towards pos x
cur_angle = np.arctan2(vecs[:, 0, 1], vecs[:, 0, 0])
cross = np.cross(vecs[:, 0], vecs[:, 1])
rot_angle = -cur_angle - (cross < 0) * np.pi
rot_mat = make_2drot(rot_angle)
# rotate at each frame
rpaths = paths @ rot_mat
return rpaths

appaths = align_point(cppaths)
apapaths = align_principle(ccpaths)

fig, axs = plt.subplots(ncols=3, squeeze=True, figsize=(16, 4))

axs[0].set_title("No Align")
axs[1].set_title("COM Align")
axs[2].set_title("Point 0 Align")
for i in range(0, 2048, 16):

axs[0].plot(paths[i, :, 0], paths[i, :, 1], ".-", alpha=0.2, color=cmap(i / 2048))
axs[1].plot(

apapaths[i, :, 0], apapaths[i, :, 1], ".-", alpha=0.2, color=cmap(i / 2048)
)
axs[2].plot(

appaths[i, :, 0], appaths[i, :, 1], ".-", alpha=0.2, color=cmap(i / 2048)
)

for i in range(3):
axs[i].set_xticks([])
axs[i].set_yticks([])

You can see how points far away on the chain from 0 have much more variance in the point 0 align, whereas the COM
alignment looks better spread. Remember, to apply these methods you must do them to your both your training data and
any prediction points. Thus, they should be viewed as part of your neural network. We can now check that rotating has
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no effect on these. The plots below have the trajectory rotated by 1 radian and you can see that both alignment methods
have no change (the lines are overlapping).

Now which method is better? Aligning based on arbitrary points is indeed easier, but it creates an unusual new variance
in your features. For example, let’s see what happens if we make a small perturbation to one conformation. The code is
hidden for simplicity. We try changing point 1, then point 0, then point 11 to see the effects of perturbations along the
chain.

As you can see, perturbing one point alters all others after alignment. This makes these transformed features sensitive to
noise, especially aligning to point 0 or 1. More importantly, this effect is uneven in the alignment to point 0. This can
in-turn make training quite difficult. Of course, neural networks are universal approximators so in theory this should not
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matter. However, I expect that using the COM alignment approach will give better training because the network will not
need to account for this unusual variance structure.

The alignment changes due to small changes in input points is described by the Jacobian of our transform which
measures how changes to one input dimension affects all output dimension.

The final analysis shows a video of the two frames. One thing you’ll note are the jumps, when the principle axes swap
direction. You can see that the ambiguity caused by these can create artifacts.

Some people refer to principle axes finding as a kind of PCA. It is. But when we discuss PCA, we mean identifying
the sources of variances across the trajectory, not across points in a single frame. You could do PCA in a single frame
and use that to define your trans/rot invariant frame. It’s mathematically equivalent to principle axes finding.

9.6.1 Using Unsupervised Methods for Alignment

There are additional methods for aligning trajectories. You could define one frame as the “reference” and find the transla-
tion and rotations that best align with that reference. This could give some interpretability to your rotation and translation
alignment. A tempting option is to use dimensionality reduction (like PCA), but these are not rotation invariant. This is
confusing at first, because remember PCA should remove translation and rotation. It removes it though from the training
data and not an arbitrary frame because it examines motion along a trajectory. You can easily see this getting principle
components and then trying to align a new frame to them and a rotated version of the new frame. You’ll get different
results. Another important consideration is if the unsupervised method can handle new data. Manifold embeddings do
not provide a linear transform that can handle new data for inference. Manifold embeddings are also not necessarily
rotation invariant or equivariant.

9.7 Distance Features

One more topic on parsing data is treating distances. As we saw above, pairwise distance is a wise transformation because
it is translation and rotation invariant. However, we may want to sometimes transform this further. One obvious choice is
to use 1/𝑟 as the input to our neural network. This is because most properties of atoms (and thus molecules) are affected
by their closest nearby atoms. An oxygen nearby a carbon is much more important than an oxygen that is 100 nanometers
away. Choosing 1/𝑟 as an input makes it easier for a neural network to train because it encodes this physical insight
about local interactions being the most important. Of course, a neural network could learn to turn 𝑟 into 1/𝑟 because
they are universal approximators. Yet this approach means we do not need to waste training data and weights on learning
to change 𝑟 into 1/𝑟. This approach will not work on non-local or mildly-non-local effects like electrostatics or multi-scale
phenomena.

Another detail on distances is that we often want to “featurize” them; we’d like to go from one a single number like
𝑟 = 3.2 to a vector of reals. Why? Well that’s just how neural networks learn. Hidden-layers need to have more than 1
dimension to be expressive enough to model any function. This seems like an obvious point though: if you used 𝑟 in a
neural network it would obviously get larger as it goes through hidden layers. However, there are a few “standard” ways
that people like to do this process. There are valid reasons, like making it smoothly differentiable, that you might choose
one of these special “featurizing” functions.
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9.7.1 Repeating

The first approach is to just repeat 𝑟 up to the desired hidden dimension. This is representable as a dense neural network
with no activation.

9.7.2 Binning

As explored in Gilmer et al. [GSR+17] and others, you can bin your distances to be a one-hot vector. Essentially, you
histogram 𝑟 into fixed bins so that you only have one bin being “hot”. Each bin will represent a segment of positions (e.g.,
4.5-5.0). This has discontinuous derivatives with respect to distance and is rarely used.

9.7.3 Radial Basis Functions

Radial basis functions are a commonly used procedure for converting a scalar into a fixed number of features and were
first used in interpolation[Pow77]. Radial basis functions use the following equation:

𝑒𝑖 = exp [− (𝑟 − 𝑑𝑖)
2 /𝑤] (9.9)

where 𝑑𝑖 is an equally spaced vector of distances (e.g., [1.5, 3.0, 4.5, 6.0]) and 𝑤 is a trainable (or hyper) parameter. This
computes a Gaussian kernel between 𝑟 and all distances 𝑑𝑖. What is nice about this expression is the smooth well-behaved
derivatives with respect to 𝑟 and lack of trainable parameters. You can (almost) represent this with a dense layer and a
softmax activation.

9.7.4 Sub NN

Another strategy used in Gilmer et al. [GSR+17] is to just put your distances through a series of dense layers to get
features. For example, if you’re going to use the distance in a graph neural network you could run it through three dense
layers first to get a larger feature dimension. Remember that repeating and radial basis functions are equivalent to dense
layers (assuming correct activation choice), so this strategy can be a simple solution to the above choice.

9.8 Chapter Summary

• Machine learning models that work with molecules must be permutation invariant, such that if the atoms are rear-
ranged, the output will not change.

• Translational invariance of molecular coordinates is when the coordinates are shifted and the resulting output does
not change.

• Rotational invariance is similar, except the molecular coordinates are rotated.
• Data augmentation is when you try to teach your model the various types of equivariances by rotating and translating
your training data to create additional examples.

• There are various techniques, such as eigendecomposition or pairwise distance to make molecular coordinates
invariant.

• A one-hidden layer dense neural network is an example of a model with no equivariances.
• You can try alignment for trajectories, where each training example has the same ordering and number of atoms.
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CHAPTER

TEN

EQUIVARIANT NEURAL NETWORKS

The previous chapter Input Data & Equivariances discussed data transformation and network architecture decisions that
can be made to make a neural network equivariant with respect to translation, rotation, and permutations. However, those
ideas limit the expressibility of our networks and are constructed ad-hoc. Now we will take a more systematic approach
to defining equivariances and prove that there is only one layer type that can preserve a given equivariance. The result of
this section will be layers that can be equivariant with respect to any transform, even for more esoteric cases like points
on a sphere or mirror operations. To achieve this, we will need tools from group theory, representation theory, harmonic
analysis, and deep learning. Equivariant neural networks are part of a broader topic of geometric deep learning, which
is learning with data that has some underlying geometric relationships. Geometric deep learning is thus a broad-topic
and includes the “5Gs”: grids, groups, graphs, geodesics, and gauges. However, you’ll see papers with that nomenclature
concentrated on point clouds (gauges), whereas graph learning and grids are usually called graph neural networks and
convolutions neural networks respectively.

Audience & Objectives
This chapter builds on Input Data & Equivariances and a strong background in math. Although not required, a background
on Hilbert spaces, group theory, representation theory, Fourier series, and Lie algebra will help. After completing this
chapter, you should be able to

• Derive and understand the mathematical foundations of equivariant neural networks
• Reason about equivariances of neural networks
• Know common symmetry groups
• Implement G-equivariant neural network layers
• Understand the shape, purpose, and derivation of irreducible function representations
• Know how weight-constraints can be used as an alternative

Danger: This chapter teaches how to add equivariance for point clouds, but not permutations. To work with real
molecules we need to combine ideas from this chapter with permtuation equivariance from theGraph Neural Networks
chapter. That combination is explored in Modern Molecular NNs.
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10.1 Do you need equivariance?

I’m being a bit unfair, these papers have some slightly different application areas (lie vs compact vs finite groups) and
differ mostly in their nonlinearity.

Before we get too far, let me first try to talk you out of equivariant networks. The math required is advanced, especially
because the theory of these is still in flux. There are five papers in the last few years that propose a general theory for
equivariant networks and they each take a slightly different approach [FSIW20, CGW19, KT18, LW20, FWW21]. It
is also easy to make mistakes in implementations due to the complexity of the methods. You must also do some of
the implementation details yourself, because general efficient implementations of groups is still not solved (although we
are getting close now for specifically SE(3)). You will also find that equivariant networks are not in general state of
the art on point clouds – although that is starting to change with recent benchmarks set in point cloud segmentation
[WAR20], molecular force field prediction [BSS+21], molecular energy predictions [KGrossGunnemann20], and 3D
molecular structure generation [SHF+21].
Alternatives to equivariant networks are training and testing augmentation. Both are powerful methods for many domains
and are easy to implement [SK19]. You can find details in the Input Data & Equivariances chapter. However, aug-
mentation does not work for locally compact symmetry groups (e.g., SO(3)) — so you cannot use them for rotationally
equivariant data. You can do data transformations like discussed in Input Data & Equivariances to avoid equivariance
and only work with invariance.
So why would you study this chapter? I think these ideas are important and incorporating the equivariant layers into other
network architectures can dramatically reduce parameter numbers and increase training efficiency.

10.2 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages.

Tip: To install packages, execute this code in a new cell.

!pip install dmol-book

If you find install problems, you can get the latest working versions of packages used in this book here

10.2.1 Outline

We have to lay some mathematical foundations before we can grasp the equations and details of equivariant networks.
We’ll start with a brief overview of group theory so we can define the principle of equivariance generally. Then we’ll
show how any equivariance can be enforced in a neural network via a generalization of convolutions. Then we’ll visit
representation theory to see how to encode groups into matrices. Then we’ll see how these convolutions can be more easily
represented using the generalization of Fourier transforms. Finally, we’ll examine some implementations. Throughout
this chapter we’ll see three examples that capture some of the different settings.
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10.3 Group Theory

A modern treatment of group theory can be found in [Zee16]. You can watch a short fun primer video on group theory
from 3Blue1Brown here.
A group is a general object in mathematics. A group is a set of elements that can be combined in a binary operation
whose output is another member of the group. The most common example are the integers. If you combine two integers
in a binary operation, the output is another integer. Of course, it depends on the operation (1 ÷ 2 does not give an
integer), so specifically consider addition. Integers are not the example we care about though. We’re interested in groups
of transformations that move points in a space. Operations like rotation, scaling, mirroring, or translating of single
points. As you read about groups here, remember that the elements of the groups are not numbers or points. The group
elements are transformations that act on points in the space. Notice I’m being a bit nebulous on what the space is for now.
Let’s first define a group:

Group Definition
A group 𝐺 is a set of elements (e.g., {𝑎, 𝑏, 𝑐, 𝑖, 𝑒}) equipped with a binary operation (𝑎 ⋅ 𝑏 = 𝑐) whose output is another
group element and the following conditions are satisfied:

1. Closure The output of the binary operation is always a member of the group
2. Associativity (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐)
3. Identity There is a single identity element 𝑒 such that 𝑒𝑥 = 𝑥∀𝑥 ∈ 𝐺
4. Inverse There exists exactly one inverse element 𝑖 for each 𝑥 such that 𝑥𝑖 = 𝑒

This is quite a bit of nice structure. We always have an inverse available. Applying the binary operations never accidentally
leaves our group. One important property that is missing from this list is commutativity. In general, a group is not
commutative so that 𝑎 ⋅ 𝑏 ≠ 𝑏 ⋅ 𝑎. If the group does have this extra property, we call the group abelian. Another detail is
how big the set is. It can indeed be infinite, which is why the integers or all possible rotations of rotations of points on a
sphere can be represented as a group. One notational convenience we’ll make is that the binary operation “⋅” will just be
referred to as “dot” or sometimes multiplication if I get sloppy. The number of elements in a group |𝐺| is known as the
order.

If you multiply two transforms 𝑎 ⋅ 𝑏, we always apply 𝑏 first and then 𝑎. This is important to remember for non-
commutative groups (non-abelian).

The point of introducing the groups is so that they can transform elements of our space. This is done through a group
action

Group Action
A group action 𝜋(𝑔, 𝑣) is a mapping from a group 𝐺 and a space 𝒳 to the space 𝒳:

𝜋 ∶ 𝐺 × 𝒳 → 𝒳 (10.1)

function arrow
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𝐺 × 𝒳 means there are two input arguments, one from group 𝐺 and one from space 𝒳. → 𝒳 shows our function
outputs a value in the space 𝒳.

So a group action takes in two arguments (binary): a group element and a point in a space 𝒳 and transforms the point to
a new one: 𝜋(𝑔, 𝑥0) = 𝑥1. This is just a more systematic way of saying it transforms a point. The group action is neither
unique to the space nor group. Often we’ll omit the function notation for the group action and just write 𝑔𝑥 = 𝑥′.
Let’s introduce our three example groups that we’ll refer to throughout this chapter.

10.3.1 � Finite Group 𝑍6

The first group is about rotations of a hexagon . Our basic group member will be rotating the hexagon

enough to shift all the vertices: → . Notice I’ve colored the vertices and added a
line so we can easily distinguish the orientation of the hexagon. Remember the hexagon, its colors, and if it is actually
symmetric have nothing to do with the group. The group elements are transformations we apply to the hexagon.
One group action for this example can use modular arithmetic. If we represent a point in our space as {0, … , 5} then the
rotation transformation is 𝑥′ = 𝑥 + 1 (mod 6). For example, if we start at 5 and rotate, we get back to 0.
Our group must contain our rotation transformation 𝑟 and the identity: {𝑒, 𝑟}. This set is not closed though: rotating twice

𝑟 ⋅ 𝑟 → → gives a new group element 𝑟2. To close the group we
need to have {𝑒, 𝑟, 𝑟2, 𝑟3, 𝑟4, 𝑟5}.

Is this closed? Consider rotating twice and then five times 𝑟5 ⋅ 𝑟2 → →

You can see that this is the same as 𝑟, so 𝑟5 ⋅ 𝑟2 = 𝑟. What about the inverses element? The in-
verse of 𝑟 is 𝑟5. 𝑟 ⋅ 𝑟5 = 𝑒. You can indeed see that each element has an inverse (𝑒 is its own inverse).
In general, we can write out the group as a multiplication table that conveys all group elements and defines the output of
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all binary outputs:

𝑒 𝑟 𝑟2 𝑟3 𝑟4 𝑟5

𝑒 𝑒 𝑟 𝑟2 𝑟3 𝑟4 𝑟5

𝑟 𝑟 𝑟2 𝑟3 𝑟4 𝑟5 𝑒
𝑟2 𝑟2 𝑟3 𝑟4 𝑟5 𝑒 𝑟
𝑟3 𝑟3 𝑟4 𝑟5 𝑒 𝑟 𝑟2

𝑟4 𝑟4 𝑟5 𝑒 𝑟 𝑟2 𝑟3

𝑟5 𝑟5 𝑒 𝑟 𝑟2 𝑟3 𝑟4

You can also see that the group is abelian (commutative). For example, 𝑟 ⋅ 𝑟3 = 𝑟3 ⋅ 𝑟.
This kind of table is called a Cayley table. Although it doesn’t matter for this example, we’ll see later that the order of
look-up matters. Specifically if our group is non-abelian. The row factor comes first and the column factor second. So
𝑟 ⋅ 𝑟5 means we look at row 𝑟 and column 𝑟5 to get the group element, which in this case is 𝑒.
This group of rotations is an example of a cyclic group and is isomorphic (same transformations, but operates on different
objects) to integers modulo 6. Meaning, you could view rotation 𝑟𝑛 as operating on integers (𝑥+𝑛)mod 6. Cyclic groups
are written as 𝑍𝑛, so this group is 𝑍6.

10.3.2 � p4m

p4m strictly speaking only includes integer translations but many of the principles apply for continuous infinite groups
(locally compact) and integer (countably) infinite groups

The second group contains translation, 90° rotations, and horizontal/vertical mirroring. We’re now operating on real
numbers 𝑥, 𝑦, so we’re in ℝ2. Let’s ignore the translation for now and just consider mirroring (𝑠) and rotation by 90° (𝑟)
about the origin. What powers of 𝑟 and 𝑠 dowe need to have a closed group? Considering rotations alone first, like last time

we should only need up to 𝑟3. Here are the rotations visually: , , ,

What about mirroring on horizontal/vertical? Mirroring along the horizontal axis:

→ is actually the same as rotating twice and then mirroring along the vertical. In fact, you only need
to have mirroing along one axis. We’ll choose the vertical axis by convention and denote that as 𝑠.
We can build the group action piece by piece. The group action for rotation can be represented as a 2D rotation matrix
acting a point (𝑥, 𝑦):

[ cos 𝑘2𝜋
4 − sin 𝑘2𝜋

4
sin 𝑘2𝜋

4 cos 𝑘2𝜋
4

] [ 𝑥
𝑦 ] , 𝑘 ∈ {0, 1, 2, 3}
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where 𝑘 can allow us to do two rotations at once (𝑘 = 2) or the identity (𝑘 = 0). The vertical axis mirror action can be
represented by

[ −1 0
0 1 ] [ 𝑥

𝑦 ]

These two group actions can be ordered to correctly represent rotation then mirroring or vice-versa.

Now is this closed with the group elements {𝑒, 𝑟, 𝑟2, 𝑟3, 𝑠}? Visually we have , ,

, , ? No. Consider 𝑟2 ⋅𝑠 → →

which is not an element. To close the group, we need {𝑒, 𝑟, 𝑟2, 𝑟3, 𝑠, 𝑟𝑠, 𝑟2𝑠, 𝑟3𝑠}. The multiplication
table (which defines the elements too) is:

𝑒 𝑟 𝑟2 𝑟3 𝑠 𝑟𝑠 𝑟2𝑠 𝑟3𝑠
𝑒 𝑒 𝑟 𝑟2 𝑟3 𝑠 𝑟𝑠 𝑟2𝑠 𝑟3𝑠
𝑟 𝑟 𝑟2 𝑟3 𝑒 𝑟𝑠 𝑟2𝑠 𝑟3𝑠 𝑠
𝑟2 𝑟2 𝑟3 𝑒 𝑟 𝑟2𝑠 𝑟3𝑠 𝑠 𝑟𝑠
𝑟3 𝑟3 𝑒 𝑟 𝑟2 𝑟3𝑠 𝑠 𝑟𝑠 𝑟2𝑠
𝑠 𝑠 𝑟3𝑠 𝑟2𝑠 𝑟𝑠 𝑒 𝑟3 𝑟2 𝑟
𝑟𝑠 𝑟𝑠 𝑠 𝑟3𝑠 𝑟2𝑠 𝑟 𝑒 𝑟3 𝑟2

𝑟2𝑠 𝑟2𝑠 𝑟𝑠 𝑠 𝑟3𝑠 𝑟2 𝑟 𝑒 𝑟3

𝑟3𝑠 𝑟3𝑠 𝑟2𝑠 𝑟𝑠 𝑠 𝑟3 𝑟2 𝑟 𝑒
This is a Cayley table. Remember The row factor comes first and the column factor second. So 𝑟𝑠 ⋅ 𝑟3 means we look at
row 𝑟𝑠 and column 𝑟3 to get the group element, which in this case is 𝑟2𝑠.
As you can see from the Cayley table, the group is closed. Remember, elements like 𝑟𝑠 are not a binary operation.
They are group elements, hence the missing binary operation symbol. We also see that the group is not commutative.

𝑟 ⋅ 𝑠 is → → , so 𝑟 ⋅ 𝑠 = 𝑟𝑠 as expected. However, 𝑠 ⋅ 𝑟 is

→ → , which is the group element 𝑟3𝑠.
We can also read the inverses off the table. For example, the inverse of 𝑟 is the column which gives the identity element:
𝑟3. This group is known as the dihedral group 4 𝐷4. It has order 8.
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Now consider the translation group elements. For simplicity, let’s only consider integer translations. We can label them
as 𝑡𝑤,ℎ. So 𝑡3,4 means translate by 𝑥 + 3 and 𝑦 + 4. Is this a proper group? Certainly it associative, there is an identity
𝑡0,0 and an inverse for each element 𝑡−𝑥,−𝑦. What about closure? Yes, since translating twice is equivalent to one larger
translation: 𝑡𝑤,ℎ ⋅ 𝑡𝑤′,ℎ′ = 𝑡𝑤+𝑤′,ℎ+ℎ′ . This expression also shows group action for translation.
What about when we combine with our other elements from the 𝐷4 group? Consider the product 𝑟 ⋅ 𝑡3,4. This means
translating by (3, 4) and then rotating by 90° about the origin. If you consider this acting on a single point (0, 0), you
could get (0, 0) → (3, 4) → (−4, 3). What element of our group would this represent? At first it seems like it could be
𝑡−3,4. However, 𝑡−3,4 would only work specifically for starting at (0, 0). If you started at (1, 1), you would get to (−4, 5)
with 𝑟 ⋅ 𝑡3,4 and (−2, 5) with 𝑡−3,4. To be correct for any point, we need a different group element. So the product 𝑟 ⋅ 𝑡3,4
actually cannot be a product but instead must be a group element. In fact, our new combined group is just going to be 𝑎𝑏
where 𝑎 is an element from 𝐷4 and 𝑏 is a translation. Thus 𝑟 ⋅ 𝑡3,4 = 𝑟𝑡3,4.
Combing these two groups, the translation and 𝐷4, is an example of a semidirect product. A semidirect product just
means that we create a new group by combining all possible group elements. There is some machinery for this, like the
identity element in our new group is something like 𝑒𝑡0,0, and it has some other structure. It is called semidirect, instead
of direct, because we can actually mix our group elements. The elements both act on points in the same space (𝑥, 𝑦 plane),
so this makes sense. Another condition is that we can only have a semidirect product when one subgroup is normal and the
translation subgroup is the normal subgroup. It is coincidentally abelian, but these two properties are not always identical.
This semidirect product group is called p4m.
Below, is an optional section that formalizes the idea of combining these two groups into one larger group.

Normal Subgroup
A normal subgroup is a group of elements 𝑛 from the group 𝐺 called 𝑁 . Each 𝑛 ∈ 𝑁 should have the property that
𝑔 ⋅ 𝑛 ⋅ 𝑔−1 gives an element in 𝑁 for any 𝑔.

This does not mean 𝑔 ⋅ 𝑛 ⋅ 𝑔−1 = 𝑛, but instead that 𝑔 ⋅ 𝑛 ⋅ 𝑔−1 = 𝑛′ where 𝑛′ is some other element in 𝑁 . For example,
in p4m the translations form a normal subgroup. Rotating, translating, then doing the inverse of the rotation is equivalent
to some translation. Notice that 𝐷4 is not a normal subgroup of p4m. If you do an inverse translation, rotate, then do a
translation you may not have something equivalent to a rotation. It may be strange that we’re talking about the group p4m
when we haven’t yet described how it’s defined (identity, inverse, binary op). We’ll do that with the semidirect product
and then we could go back and verify that the translations are a normal subgroup more rigorously. I do not know the exact
connection, but it seems that normal subgroups are typically abelian.

Semidirect Product
Given a normal subgroup of 𝐺 called 𝑁 and a subgroup 𝐻 , we can define 𝐺 using the semidirect product. Each element
in 𝐺 is a tuple of two elements in 𝑁, 𝐻 written as (𝑛, ℎ). The identity is (𝑒𝑛, 𝑒ℎ) and the binary operation is:

(𝑛1, ℎ1) ⋅ (𝑛2, ℎ2) = (𝑛1 ⋅ 𝜙(ℎ1)(𝑛2), ℎ1 ⋅ ℎ2) (10.2)

where 𝜙(ℎ)(𝑛) is the conjugation of 𝑛 𝜙(ℎ)(𝑛) = ℎ ⋅ 𝑛 ⋅ ℎ−1. When a transform (𝑛, ℎ) is applied, we follow the normal
convention that ℎ is applied first followed by 𝑛.

We are technically doing an outer semidirect product: combining them under the assumption that both𝐷4 and 𝑇 are part
of a larger group which contains both. This is a bit of a semantic detail, but they are actually both part of 𝑝4𝑚 and a larger
group called the affine group which includes, rotation, shear, translation, mirror, and scale operations on points. You could
also argue they are part of groups which can be represented by 3x3 invertible matrices. Thus, you can combine these and
get something that is still smaller than their larger containing group (𝑝4𝑚 is smaller than all affine transformations).
One consequence of the semidirect product is that if you have a group element (𝑛, ℎ) but want to instead apply 𝑛 first
(instead of ℎ), you can use the binary operation:

(𝑒𝑛, ℎ) ⋅ (𝑛, 𝑒ℎ) = (𝑒𝑛 ⋅ 𝜙(ℎ)(𝑛), ℎ ⋅ 𝑒ℎ) = (𝜙(ℎ)(𝑛), ℎ) (10.3)
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so 𝜙(ℎ)(𝑛) somehow captures the effect of switching the order applying elements from𝐻 and𝑁 . In our case, this means
swapping the order of rotation/mirroring and translation.
To show what effect the semidirect product has in p4m, we can clean-up our example above about 𝑟⋅𝑡3,4. We should write
the first element of this binary product 𝑟 as a tuple of group elements: one from the 𝐷4 and one from the translations.
Since there is no translation for 𝑟, we use the identity. Thus we write 𝑟 as (𝑡0,0, 𝑟) in our semidirect product group p4m.
Note that the normal subgroup comes first (applied last) by convention. Similarly, 𝑡3,4 is written as (𝑡3,4, 𝑒). Our equation
becomes:

(𝑡0,0, 𝑟) ⋅ (𝑡3,4, 𝑒) = (𝑡0,0 ⋅ 𝜙(𝑟)(𝑡3,4), 𝑟 ⋅ 𝑒) = (𝑡0,0 ⋅ 𝜙(𝑟)(𝑡3,4), 𝑟)

where 𝜙 is the automorphism that distinguishes a semidirect product from a direct product. The direct product has
𝜙(ℎ)(𝑛) = 𝑛 so that the binary operation for the direct product group is just the element-wise binary products. 𝜙(ℎ)(𝑛) =
ℎ𝑛ℎ−1 for semidirect products. In our equation, this means 𝜙(𝑟)(𝑡3,4) = 𝑟 ⋅ 𝑡3,4 ⋅ 𝑟3. Substituting this and using the fact
that both groups have the same binary operation (matrix multiplication, as we’ll see shortly):

(𝑡0,0𝜙(𝑟)(𝑡3,4), 𝑟) = (𝑟 ⋅ 𝑡3,4 ⋅ 𝑟3, 𝑟) = 𝑟 ⋅ 𝑡3,4 ⋅ 𝑟3 ⋅ 𝑟 = 𝑟 ⋅ 𝑡3,4

Thus we’ve proved that translating by 3, 4 followed by rotating can be expressed as 𝑟 ⋅ 𝑡3,4, which seems like a lot of work
for an obvious result. I won’t cover the semidirect product of the group action, but we’ll see that we do not necessarily
need to build a group action encapsulating both translation and rotation/mirroring.

10.3.3 � SO(3) Group

SO(3) is the group for analyzing 3D point clouds like trajectories or crystal structures (with no other symmetries). SO(3)
is the group of all rotations about the origin in 3D. The group is non-abelian because rotations in 3D are not commutative.
The group order is infinite, because you can rotate in this group by any angle (or sets of angles). If you are interested in
allowing translations, you can use SE(3) which is the semidirect product of SO(3) and the translation group (like p4m),
which is a normal subgroup.
The SO(3) name is a bit strange. SO stands for “special orthogonal” which are two properties of square matrices. In
this case, the matrices are 3 × 3. Orthogonal means the columns sum to one and special means the determinant is 1.
Interestingly, all rotations in 3D around the origin are also the SO(3) matrices.
One detail is that since we’re rotating (no scale or translation) the distance to origin will not change. We cannot move
the radius. The group action is the product of 3 3D rotation matrices (using Euler angles) 𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑧(𝛾) where
𝛼, 𝛾 ∈ [0, 2𝜋], 𝛽 ∈ [0, 𝜋] and

𝑅𝑧(𝜃) = ⎡⎢
⎣

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

⎤⎥
⎦

𝑅𝑦(𝜃) = ⎡⎢
⎣

cos 𝜃 0 sin 𝜃
0 1 0
− sin 𝜃 0 cos 𝜃

⎤⎥
⎦

10.3.4 Groups on Spaces

We’ve defined transforms and their relationships to one another via group theory. Now we need to actually connect the
transforms to a space. It is helpful to think about the space as Euclidean with a concept of distance and coordinates,
but we’ll see that this is not required. Our space could be vertices on a graph or integers or classes. There are some
requirements though. The first is that our space must be homogeneous. Homogeneous means that from any point in our
space 𝑥 we can reach any other point with a transform 𝑔 from our group 𝐺. The second requirement is that if our group
is infinite, the space must locally compact. This is a concept from topology and we won’t really ever be troubled by it.
Most spaces we’ll see in chemistry or materials science (Euclidean spaces) are locally compact. This doesn’t matter for
finite groups, so we can use non-compact spaces.
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Lie group

If the group transforms are further smooth and have smooth inverses, the group (and associated space) are called a lie
group.

� Finite Group 𝑍6

The space is homogeneous because our group includes “compound” rotations like 𝑟4. This is a finite group, so we do not
require the space to be compact.

� Locally Compact p4m

The space is homogeneous since we can use a translation to get to any other point. The space is locally compact because
we are in 2D Euclidean geometry.

� SO(3) Group

The space is homogeneous because we restrict ourselves to being on the sphere. The space is locally compact because we
are in 3D Euclidean geometry.
The requirement of space being homogeneous is fairly strict. It means we cannot work with ℝ2 with a finite group like
mirror and fixed rotations (i.e., p4m without translations). For example, going from 𝑥 = (0, 0) to 𝑥 = (1, 1) cannot be
done with rotations/mirror group elements alone. As you can see, working in a Euclidean space thus requires a locally
compact group. Similarly, a finite group implies a finite space because of the homogeneous requirement.
This may seem like a ton of work. We could have just started with 𝑥𝑦𝑧 coordinates and rotation matrices. Please continue
to wait though, we’re about to see something incredible.

10.4 Equivariance Definition

You should be thinking now about how we can define equivariance using our new groups. That’s where we’re headed.
We need to do a bit of work now to “lift” neural networks and our features into the framework we’re building. First, in
Input Data & Equivariances we defined our features as being composed of tuples ( ⃗𝑟𝑖, ⃗𝑥𝑖) where ⃗𝑟𝑖 is a spatial point and

⃗𝑥𝑖 are the features at that point. Let’s now view these input data as functions, defined as 𝑓( ⃗𝑟) = ⃗𝑥 and assume if a point
⃗𝑟′ isn’t in our training data then 𝑓( ⃗𝑟′) = ⃗0. More formally, our training data is a function 𝑓 ∶ 𝒳 → ℝ𝑛 that maps from
our homogeneous space 𝑥 to real vector (or complex vectors) of dimension 𝑛.
We have promoted our data into a function and now a neural network can no longer be just function since its input is a
function. Our neural network will be also promoted to an linear map, which has an input of a function and an output
of a function. Formally, our network 𝜓 ∶ 𝑓(𝒳) → 𝑓 ′(𝒳). Notice the input and output spaces of the functions should
be the same (we cannot switch from 2D to 3D). Linear maps are also called operators, depending on which branch of
mathematics you’re in.
The last piece of equivariance is to promote our group elements, which transform points, to work on functions.

G-Function Transform Definition
An element 𝑔 of group 𝐺 on the homogeneous space 𝒳 can act on a function 𝑓 ∶ 𝒳 → ℝ𝑛 via the group transform linear
map 𝕋𝑔 ∶ 𝑓(𝒳) → 𝑓 ′(𝒳) defined as

𝑓 ′(𝑔𝑥) = 𝑓(𝑥) ⇒ 𝑓 ′(𝑥) = 𝑓(𝑔−1𝑥) (10.4)
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This definition takes a moment to think about. Consider a translation of an image. You want to move an image to the
left by 10 pixels, so 𝑔 = 𝑡10,0. The image is defined by the function 𝑓(𝑥, 𝑦) = (𝑟, 𝑔, 𝑏), where 𝑟, 𝑔, 𝑏 is the color. We
want 𝑇𝑔𝑓(𝑥, 𝑦). Without knowing about groups, you can intuit that translating can be done by creating a new function
𝑓 ′(𝑥′, 𝑦′) = 𝑓(𝑥 − 10, 𝑦). Notice that the inverse of 𝑔−1 = 𝑡−10,0 acts on the points, not 𝑔. Recall that a group requires
there to be an inverse for any group element.
Now we have all the pieces to define an equivariant neural network:

Equivariant Neural Network Definition
Given a group 𝐺 that has actions on two homogeneous space 𝒳1 and 𝒳2, a G-equivariant neural network is a linear map
𝜓 ∶ 𝑓(𝒳1) → 𝑓 ′(𝒳2) that has the property[KT18]:

𝜓 [𝕋𝑔𝑓(𝑥)] = 𝕋′
𝑔𝜓 [𝑓(𝑥)] ∀ 𝑓(𝑥) (10.5)

where 𝕋𝑔 and 𝕋′
𝑔 are G-function transforms on the two spaces. If 𝕋′

𝑔 = id, meaning the transform is the identity in the
output space regardless of 𝑔, then 𝜓 is a G-invariant neural network.

The definition means that we get the same output if we transform the input function to the neural network or transform
the output (in the equivariant case). In a specific example, if we rotate the input by 90 degrees, that’s the same result as
rotating the output by 90 degrees. Take a moment to ensure that matches your idea of what equivariance means. After
all this math, we’ve generalized equivariance to arbitrary spaces and groups.
What the two input and output spaces? It’s easiest to think about them as the same space for equivariant neural networks.
For an invariant, the output space is typically a scalar. Another example for an invariant one could be aligning a molecular
structure to a reference. The neural network should align to the same reference regardless of how the input is transformed.

10.5 G-Equivariant Convolution Layers

Kondor and Trivedi showed that there is only one way to make a G-equivariant neural network:

G-Equivariant Convolution Theorem
A neural network layer (linear map) 𝜓 is G-equivariant if and only if its form is a convolution operator ∗

𝜓(𝑓) = (𝑓 ∗ 𝜔)(𝑢) = ∑
𝑔∈𝐺

𝑓 ↑𝐺 (𝑢𝑔−1) 𝜔 ↑𝐺 (𝑔) (10.6)

where 𝑓 ∶ 𝐻 → ℝ𝑛 and 𝜔 ∶ 𝐻′ → ℝ𝑛 are functions of quotient spaces 𝐻 and 𝐻′. If the group 𝐺 is locally compact
(infinite elements), then the convolution operator is

𝜓(𝑓) = (𝑓 ∗ 𝜔)(𝑢) = ∫
𝐺

𝑓 ↑𝐺 (𝑢𝑔−1) 𝜔 ↑𝐺 (𝑔) 𝑑𝜇(𝑔) (10.7)

where 𝜇 is the group Haar measure. A Haar measure is a generalization of the familiar integrand factor you see when
doing integrals in polar coordinates or spherical coordinates.

This is one of the strongest theorems in deep learning. It says there is only one way to achieve equivariance in a neural
network. This may seem counter-intuitive since there are many competing approaches to convolutions. These other
approaches are actually equivalent to a convolution, just it can be hard to notice.
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As you can see from the theorem, wemust introducesmore new concepts. The first important detail is that all our functions
are over our group elements (technically the quotient space 𝐺/𝐻0), not our space. This should seem strange. We will
easily fix this because there is a (bijective) way to assign one group element to each point in the space. The second detail
is the 𝑓 ↑𝐺. The order of the group 𝐺 is greater than or equal to the number of points in our space, so if the function
is defined on our space, we must “lift” it up to the group 𝐺 which has more elements. The last detail is the point about
quotient spaces. Quotient spaces are how we cut-up our group 𝐺 into subgroups so that one has the same order as the
number of points in our space. Below I detail these new concepts just enough so that we can implement and understand
these convolutions.

Warning: To actually learn, you need to put in a nonlinearity in after the convolution. A simple (and often used)
case is to just use a standard activation function like ReLU. We’ll look at more complex examples below.

10.6 Converting between Space and Group

Let’s see how we can convert between functions on the space 𝒳 and functions on the group 𝐺. |𝐺| ≥ |𝒳| (because the
space is homogeneous) so it is rare that we can uniquely replace each point in space with a group in 𝐺. Instead, we will
construct a partitioning of 𝐺 into |𝒳| sets called a quotient space 𝐺/𝐻 such that |𝐺/𝐻| = |𝒳|. It turns out, there is
a well-studied approach to arranging elements in a group called cosets. Constructing cosets is a two-step process. First
we define a subgroup 𝐻 . A subgroup means it is itself a group; it has identities and inverses. We cannot accidentally
leave 𝐻 , ℎ1 ⋅ ℎ2 ∈ 𝐻 . For example, translation transformations are a subgroup because you cannot accidentally create a
rotation when combining two translations.

This process of constructing cosets and then using that to lift our function is closely related to the process of finding
an induced representation on 𝐺 via a representation on 𝐻 .

After constructing a subgroup 𝐻 , we can apply an element 𝑔 to every element in 𝐻 , written as
𝑔𝐻 = {𝑔 ⋅ ℎ∀ℎ ∈ 𝐻} (10.8)

If this sounds strange, wait for an example. 𝑔𝐻 is called a left coset. We mention the direction because 𝐺’s binary
operation may not be commutative (non-abelian). What happens if 𝑔 is in 𝐻? No problem; 𝐻 is a group so applying an
element to every element in 𝐻 just gives back 𝐻 (i.e. ℎ𝐻 = 𝐻). Cosets are not groups, they are definitely not closed or
have inverses. What’s the point of making all these cosets? Remember our goal is to partition 𝐺 into a bunch of smaller
sets so that we have one for each point in 𝒳. Constructing cosets partitions 𝐺 for sure, but do we get enough? Could we
accidentally have overlaps between cosets, where 𝑔1𝐻 and 𝑔2𝐻 contain the same elements?

If your group involves rotations, make life easy on yourself and always choose 𝑥0 as the origin (or center of the
rotations).

It turns out if our space is homogeneous we can construct our cosets in a special way so that we have exactly one coset
for each point in the space 𝒳. To get our group, we pick an arbitrary point in the space 𝑥0. Often this will be the origin.
Then we choose our subgroup 𝐻 to be all group elements that leave 𝑥0 unchanged. This is called a stabilizer subgroup
𝐻0 and is defined as

𝐻0 = {𝑔 ∈ 𝐺 such that 𝑔𝑥0 = 𝑥0} (10.9)
We will not prove that this is a group itself. This defines our subgroup. Here’s the remarkable thing: we will have exactly
enough cosets with this stabilizer as there are points in 𝒳. However, multiple 𝑔′𝑠 will give the same coset (as expected,
since |𝐺| > |𝒳|).
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This set of all cosets is itself a group and it is written as 𝐺/𝐻0. The fact that the cosets is a group is just weird. What
is the identity coset? How do you define binary operations on cosets? It turns out we do not need these items but it is
fascinating.

Now comes the details, how do we match-up points in 𝒳 to the cosets? We know that the space is homogeneous so each
point in 𝑥 can be reached from our arbitrary origin by a group element 𝑔𝑥0 = 𝑥. That’s one way to connect points to
group elements, but which coset will 𝑔 be in? There also may be multiple 𝑔s that satisfy the equation. It turns out that all
the group elements that satisfy the equation will be in the same coset. The reason why is that 𝑔 ⋅ ℎ𝑥0 = 𝑔𝑥0 because all
elements ℎ of the stabilizer group do not move 𝑥0. Quite elegant.
How do we find which coset we need? Since the identity 𝑒 is in 𝐻0 (by definition), the coset 𝑔𝐻0 will contain 𝑔 itself.
Thus, we can convert a function 𝑓(𝑥) from the space to be a function on the quotient space 𝑓(𝑔) via what we call lifting:

𝑓 ↑𝐺 (𝑔) = 𝑓(𝑔𝑥0) (10.10)

One point to note is that you can plug any element 𝑔 from the group into 𝑓 ↑𝐺 (𝑔) but it is bijective only over 𝐺/𝐻 (the
cosets). Your null space will be the whole subgroup 𝐻0.

A coset can have multiple labels in this system. 𝑔1𝐻0 and 𝑔2𝐻0 could be the same coset. There are no consequences
of this, but just be aware.

Going the opposite, from a function on the group to the space, is called projecting because it will have a smaller domain.
We can use the same process as above. We create the quotient space and then just take the average over a single coset to
get a single value for the point 𝑥:

𝑓 ↓𝒳(𝑥)= 1
|𝐻0| ∑𝑢∈𝑔𝐻0

𝑓(𝑢), 𝑔𝑥0=𝑥(10.11)

where we’ve used the fact that |𝑔𝐻0| = |𝐻0|. Note that the coset generating element 𝑔 is found by solving 𝑔𝑥0 = 𝑥,
where of course 𝑔 is not a stabilizing element (otherwise 𝑔𝑥0 = 𝑥0 by definition). Let’s see some examples now to make
all of these easier to understand.

� Finite Group 𝑍6

Our function is the color of the vertices in our picture 𝑓(𝑥) = (𝑟, 𝑔, 𝑏) where 𝑟, 𝑔, 𝑏 are fractions of the
color red, blue green. If we define the vertices to start at the line pointing up, we can label them 0, … , 5. So for example
𝑓(0) = (0.11, 0.74, 0.61), which is the color of the top vertex.
We can define the origin as 𝑥0 = 0. |𝐺| = |𝒳| for this finite group and thus our stabilizer subgroup only contains
the identity 𝐻0 = {𝑒}. Our cosets and their associated points will be (𝑒𝐻0, 𝑥 = 0), (𝑟𝐻0, 𝑥 = 1), (𝑟2𝐻0, 𝑥 =
2), (𝑟3𝐻0, 𝑥 = 3), (𝑟4𝐻0, 𝑥 = 4), (𝑟5𝐻0, 𝑥 = 5). The lifted 𝑓 ↑𝐺 (𝑔) can be easily defined using these cosets.
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� Locally Compact p4m

p4m is intended for images, so our example will be a function 𝑓 ∶ ℝ2 → ℝ3 that represents a color image. This group
contains rotations about the origin, so if we choose the origin as our stabilizer it will cleanly separate our group. Namely:

𝐻0 = {𝑒𝑛𝑒𝑟, 𝑒𝑛𝑟, 𝑒𝑛𝑟2, 𝑒𝑛𝑟3, 𝑒𝑛𝑠, 𝑒𝑛𝑟𝑠, 𝑒𝑛𝑟2𝑠, 𝑒𝑛𝑟3𝑠}

where our elements have been written out as the semidirect product of translations and 𝐷4 as discussed previously. Let’s
compute a coset to get a sense of this process. Consider the group element 𝑡1,0𝑒𝑟 creating the coset 𝑡1,0𝑒𝑟𝐻0. The first
element of the coset is 𝑡1,0𝑒𝑟 ⋅ 𝑒𝑛𝑒𝑟 = 𝑡1,0𝑒𝑟. The second element is 𝑡1,0𝑒𝑟 ⋅ 𝑡0,0𝑟 = 𝑡1,0𝑟. The rest of the elements of
this coset are:

𝑡1,0𝑒𝑟𝐻0 = {𝑡1,0𝑒𝑟, 𝑡1,0𝑟, 𝑡1,0𝑟2, 𝑡1,0𝑟3, 𝑡1,0𝑠, 𝑡1,0𝑟𝑠, 𝑡1,0𝑟2𝑠, 𝑡1,0𝑟3𝑠}

Note these were simple to compute because 𝜙(𝑔)(𝑒𝑛) = 𝑔𝑒𝑛𝑔−1 = 𝑒𝑛. Now what point is this associated with? Consider
the first non-identity coset element 𝑡1,0𝑟 acting on the origin: (0, 0) → (0, 0) → (1, 0). You’ll see similarly that all
elements in the coset will follow the same pattern: the first element from 𝐻0 doesn’t move the origin (by definition) and
the second element is the same in the coset (translation by 𝑥 + 1). Thus, the first coset 𝑡1,0𝑒𝑟𝐻0 is associated with the
point (1, 0).
Now consider a coset that involves a 𝐷4 element: 𝑡1,0𝑟𝑠𝐻0. You can compute its elements as:

𝑡1,0𝑟𝑠𝐻0 = {𝑡1,0𝑟𝑠, 𝑡1,0𝑠, 𝑡1,0𝑟3𝑠, 𝑡1,0𝑟2𝑠, 𝑡1,0𝑟, 𝑡1,0𝑒𝑟, 𝑡1,0𝑟3, 𝑡1,0𝑟2

This contains all the same elements as the coset 𝑡1,0𝑒𝑟𝐻0! This is because we have more group elements than space in
𝒳; multiple 𝑔’s result in the same coset. This doesn’t change our intuition though: the translation transform still defines
the connection between our coset and the space. Our lifting function will be

𝑓 ↑𝐺 (𝑔) = 𝑓 ↑𝐺 ((𝑡𝑥,𝑦, ℎ)) = 𝑓(𝑥, 𝑦)

� SO(3) Lie Group

For this example, our function will be points on the sphere 𝑓(𝑥) = ∑𝑖 𝛿(𝑥 − 𝑥𝑖). We can represent the group element
rotations (among other choices) as being the product of three rotations about the 𝑦 and 𝑧 axes: 𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑧(𝛾) If that
seems surprising, remember that rotations are not commutative. Santa lives in the north pole, so let’s choose the north pole
(0, 0, 1) as our stabilizer. You cannot choose (0, 0, 0) remember because it is not in the space. Our subgroup is rotations
that only involve 𝛾, for example 𝑅𝑧(0)𝑅𝑦(0)𝑅𝑧(90) is in our subgroup 𝐻0. Let’s generate a coset, say for the group el-
ement 𝑔 = 𝑅𝑧(120)𝑅𝑦(0)𝑅𝑧(60). The coset 𝑔𝐻0 will be rotations of 𝑅𝑧(120)𝑅𝑦(0)𝑅𝑧(60)𝑅𝑧(0)𝑅𝑦(0)𝑅𝑧(𝛾), which
can be simplified to 𝑅𝑧(120)𝑅𝑦(0)𝑅𝑧(60 + 𝛾). Thus the coset is 𝑔𝐻0 = {𝑅𝑧(120)𝑅𝑦(0)𝑅𝑧(60 + 𝛾) ∀𝛾 ∈ [0, 2𝜋]}
Now what point is associated with this coset? It will be this rotation applied to the origin: 𝑅𝑧(120)𝑅𝑦(0)𝑅𝑧(60 + 𝛾)𝑥0.
The first rotation has no effect, by definition, so it becomes 𝑅𝑧(120)𝑅𝑦(0)𝑥0. The general form is that the coset for a
point 𝑥 is the rotation such that 𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑥0 = 𝑥. This quotient space happens to be identical to SO(2), rotations in
2D, because it’s defined by two angles. The lifting functions is defined as:

𝑓 ↑𝐺 (𝑔) = 𝑓 ↑𝐺 (𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑧(𝛾)) = 𝑓 (𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑥0)
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10.7 G-Equivariant Convolutions on Finite Groups

We now have all the tools to build an equivariant network for a finite group. We’ll continue with our example group 𝑍6
on vertices of a hexagon. The cells below does our imports.

import numpy as np
import matplotlib.pyplot as plt
import dmol
from dmol import color_cycle

Let’s start by defining our input function:

# make our colors (nothing to do with the model)

vertex_colors = []
for c in color_cycle:

hex_color = int(c[1:], 16)
r = hex_color // 256**2
hex_color = hex_color - r * 256**2
g = hex_color // 256
hex_color = hex_color - g * 256
b = hex_color
vertex_colors.append((r / 256, g / 256, b / 256))

vertex_colors = np.array(vertex_colors)

def z6_fxn(x):
return vertex_colors[x]

z6_fxn(0)

array([0.265625, 0.265625, 0.265625])

If we assume our group is indexed already by our vertex coordinates {0, … , 5} then our function is already defined on the
group. Now we need our trainable kernel function. It will be defined like our other function.

# make weights be 3x3 matrices at each group element
# 3x3 so that we have 3 color channels in and 3 out
weights = np.random.normal(size=(6, 3, 3))

def z6_omega(x):
return weights[x]

z6_omega(3)

array([[-0.18718385, 1.53277921, 1.46935877],
[ 0.15494743, 0.37816252, -0.88778575],
[-1.98079647, -0.34791215, 0.15634897]])

Now we can define our group convolution operator from Equation 8.6. We do need one helper function to get an inverse
group element. Remember too that this returns a function
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def z6_inv(g):
return (6 - g) % 6

def z6_prod(g1, g2):
return (g1 + g2) % 6

def conv(f, p):
def out(u):

g = np.arange(6)
# einsum is so we can do matrix product for elements of f and g,
# since we have one matrix per color
c = np.sum(np.einsum("ij,ijk->ik", f(z6_prod(u, z6_inv(g))), p(g)), axis=0)
return c

return out

conv(z6_fxn, z6_omega)(0)

array([ 1.5752359 , 3.70837565, -3.68896212])

At this point, we can now verify that the CNN is equivariant by comparing transforming the input function and the output
function. We’ll need to define our function transforms as well.

def z6_fxn_trans(g, f):
return lambda h: f(z6_prod(z6_inv(g), h))

z6_fxn(0), z6_fxn_trans(2, z6_fxn)(0)

(array([0.265625, 0.265625, 0.265625]),
array([0.94921875, 0.70703125, 0.3828125 ]))

First we’ll compute 𝜓 [𝕋2𝑓(𝑥)] – the network acting on the transformed input function

trans_element = 2
trans_input_fxn = z6_fxn_trans(trans_element, z6_fxn)
trans_input_out = conv(trans_input_fxn, z6_omega)

Now we compute 𝕋2𝜓 [𝑓(𝑥)] – the transform acting on the network output

output_fxn = conv(z6_fxn, z6_omega)
trans_output_out = z6_fxn_trans(trans_element, output_fxn)

print("g -> psi[f(g)], g -> psi[Tgf(g)], g-> Tg psi[f(g)]")
for i in range(6):

print(
i,
np.round(conv(z6_fxn, z6_omega)(i), 2),
np.round(trans_input_out(i), 2),
np.round(trans_output_out(i), 2),

)
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g -> psi[f(g)], g -> psi[Tgf(g)], g-> Tg psi[f(g)]
0 [ 1.58 3.71 -3.69] [ 4.16 0.82 -2.78] [ 4.16 0.82 -2.78]
1 [ 4.06 2.55 -3.2 ] [ 2.9 2.33 -2.6 ] [ 2.9 2.33 -2.6 ]
2 [ 2.59 2.34 -1.97] [ 1.58 3.71 -3.69] [ 1.58 3.71 -3.69]
3 [ 2.66 2.25 -1.13] [ 4.06 2.55 -3.2 ] [ 4.06 2.55 -3.2 ]
4 [ 4.16 0.82 -2.78] [ 2.59 2.34 -1.97] [ 2.59 2.34 -1.97]
5 [ 2.9 2.33 -2.6 ] [ 2.66 2.25 -1.13] [ 2.66 2.25 -1.13]

We can see that the outputs indeed match and therefore our network is G-equivariant. One last detail is that it would be
nice to visualize this, so we can add a nonlinearity to remap our output back to color space. Our colors should be between
0 and 1, so we can use a sigmoid to put the activations back to valid colors. I’ll hide the input since it contains irrelevant
code, but here is the visualization of the previous numbers showing the equivariance.

c1 = conv(z6_fxn, z6_omega)
c2 = trans_input_out
c3 = trans_output_out
titles = [

r"$\psi\left[f(g)\right]$",
r"$\psi\left[\mathbb{T}_2f(g)\right]$",
r"$\mathbb{T}_2\psi\left[f(g)\right]$",

]

def sigmoid(x):
return 1 / (1 + np.exp(-x))

def convert_color(r, g, b):
h = int(sigmoid(r) * 256**3 + sigmoid(g) * 256**2 + sigmoid(b) * 256)
return "#{:6X}".format(h)

c1 = [sigmoid(c1(i)) for i in range(6)]
c2 = [sigmoid(c2(i)) for i in range(6)]
c3 = [sigmoid(c3(i)) for i in range(6)]

fig, axs = plt.subplots(1, 3, squeeze=True)
points = np.array(

[
(0, 1),
(0.5 * np.sqrt(3), 0.5),
(0.5 * np.sqrt(3), -0.5),
(0, -1),
(-0.5 * np.sqrt(3), -0.5),
(-0.5 * np.sqrt(3), 0.5),

]
)
for i in range(3):

axs[i].scatter(points[:, 0], points[:, 1], color=[c1, c2, c3][i])
# plt.plot([0, points[0,0]], [0, points[0, 1]], color='black', zorder=0)
axs[i].set_xticks([])
axs[i].set_yticks([])
axs[i].set_xlim(-1.4, 1.4)
axs[i].set_ylim(-1.4, 1.4)
axs[i].set_aspect("equal")
axs[i].set_title(titles[i], fontsize=8)

plt.show()
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As you can see, our output looks the same if we apply the rotation either before or after, so our network is G-equivariant.

10.8 G-Equivariant Convolutions with Translation

How can we treat the p4m group? We cannot directly use the continuous convolution definition because the rota-
tions/mirror subgroup is finite and we cannot use the finite convolution because the translation subgroup is locally compact
(infinitely many elements). Instead, we will exploit the structure of the group: it is constructed via a semidirect product
so each group element is a pair of elements. Namely we can rewrite Equation 8.6 using the constituent subgroups 𝑁 ⋊ 𝐻
and writing elements 𝑔 = ℎ𝑛, 𝑔−1 = 𝑛−1ℎ−1.

Remember that 𝑔 = 𝑛ℎ is fine to use because (𝑛, 𝑒𝑟) ⋅ (𝑒𝑛, ℎ) = (𝑛, ℎ), whereas the reverse requires using the
conjugation 𝜙(ℎ)(𝑛).

(𝑓 ∗ 𝜔)(𝑢) = ∑
𝑛∈𝑁

∑
ℎ∈𝐻

𝑓 ↑𝐺 (𝑢𝑛−1ℎ−1) 𝜔(ℎ𝑛) (10.12)

Now we must treat the fact that there are an infinite number of elements in 𝑁 (the translations). We can simply choose
the kernel function (𝜔) to only have support (𝜔(𝑔) > 0) at locations we want and that will simplify the integration. This
may seem ad-hoc – but remember we already made choices like not including 45° rotations. There do exist ways to
systematically treat how to narrow the kernels into “neigbhorhoods” of groups in [FSIW20] or you can find a rigorous
derivation specifically for p4 in [RBTH20] or [CW16].

I have a hidden cell below which does a bit of magic. It makes the group elements be hashable. That in turn allows me
to cache functions, enabling much faster speeds. This code would be unusable otherwise due to all the nested loops.

Our goal for the p4m group is image data, so we’ll limit the support of the kernel to only integer translations (like pixels)
and limit the distance to 5 units. This simply reduces our sum over the normal subgroup (𝑁 ). We can now begin our
implementation. We’ll start by loading an image which will serve as our function. It is a 32 × 32 RGB image. Remember
that we need to allow points to have 3 dimensions, where the third dimension is always 1 to accommodate our augmented
space.

# load image and drop alpha channel
W = 32
try:

func_vals = plt.imread("quadimg.png")[..., :3]
except FileNotFoundError as e:

# maybe on google colab
import urllib.request

(continues on next page)
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urllib.request.urlretrieve(
"https://raw.githubusercontent.com/whitead/dmol-book/master/dl/quadimg.png",
"quadimg.png",

)
func_vals = plt.imread("quadimg.png")[..., :3]

# we pad it with zeros to show boundary
func_vals = np.pad(

func_vals, ((1, 1), (1, 1), (0, 0)), mode="constant", constant_values=0.2
)

def pix_func(x):
# clip & squeeze & round to account for transformed values
xclip = np.squeeze(np.clip(np.round(x), -W // 2 - 1, W // 2)).astype(int)
# points are centered, fix that
xclip += [W // 2, W // 2, 0]
# add 1 to account for padding
return func_vals[xclip[..., 0] + 1, xclip[..., 1] + 1]

def plot_func(f, ax=None):
if ax is None:

plt.figure(figsize=(2, 2))
ax = plt.gca()

gridx, gridy = np.meshgrid(
np.arange(-W // 2, W // 2), np.arange(-W // 2, W // 2), indexing="ij"

)
# make it into batched x,y indices and add dummy 1 indices for augmented space
batched_idx = np.vstack(

(gridx.flatten(), gridy.flatten(), np.ones_like(gridx.flatten()))
).T
ax.imshow(f(batched_idx).reshape(W, W, 3), origin="upper")
ax.axis("off")

plot_func(pix_func)

Now let’s define our G-function transform so that we can transform our function with group elements. We’ll apply a
𝑟𝑠𝑡12,−8 element to our function.

def make_h(rot, mirror):
"""Make h subgroup element"""
m = np.eye(3)

(continues on next page)
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if mirror:
m = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])

r = np.array(
[[np.cos(rot), -np.sin(rot), 0], [np.sin(rot), np.cos(rot), 0], [0, 0, 1]]

)
return r @ m

def make_n(dx, dy):
"""Make normal subgroup element"""
return np.array([[1, 0, dx], [0, 1, dy], [0, 0, 1]])

def g_func_trans(g, f):
"""compute g-function transform"""

@np_cache(maxsize=W**3)
def fxn(x, g=g, f=f):

ginv = np.linalg.inv(g)
return f(ginv.reshape(1, 3, 3) @ x.reshape(-1, 3, 1))

return fxn

g = make_h(np.pi, 1) @ make_n(12, -8)
tfunc = g_func_trans(g, pix_func)
plot_func(tfunc)

Now we need to create our lifting and projecting maps to go from functions over points to functions over group elements.
Remember, our lifting function just takes the translation element and makes that point.

# enumeraet stabilizer subgrou (rotation/mirrors)
stabilizer = []
for i in range(4):

for j in range(2):
stabilizer.append(make_h(i * np.pi / 2, j))

def lift(f):
"""lift f into group"""
# create new function from original
# that is f(gx_0)
@np_cache(maxsize=W**3)
def fxn(g, f=f):

(continues on next page)
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return f(g @ np.array([0, 0, 1]))

return fxn

def project(f):
"""create projected function over space"""

@np_cache(maxsize=W**3)
def fxn(x, f=f):

# x may be batched so we have to allow it to be N x 3
x = np.array(x).reshape((-1, 3))
out = np.zeros((x.shape[0], 3))
for i, xi in enumerate(x):

# find coset gH
g = make_n(xi[0], xi[1])
# loop over coset
for h in stabilizer:

ghi = g @ h
out[i] += f(ghi)

out[i] /= len(stabilizer)
return out

return fxn

# try them out
print("lifted", lift(pix_func)(g))
print("projected", project(lift(pix_func))([12, -8, 0]))

lifted [0.93333334 0.7176471 0.43137255]
projected [[0.72941178 0.71764708 0.72156864]]

We now need to create our kernel functions 𝜙. Rather than make a function of the group elements, we’ll use indices to
represent the different group elements. Remember we need to apply a sigmoid at the end so that we stay in color space.

kernel_width = 5 # must be odd
# make some random values for kernel (untrained)
# kernel is group elements x 3 x 3. The group elements are structured (for␣

↪simplicity) as a N x 5 x 5
# the 3 x 3 part is because we have 3 color channels coming in and 3 going out.
kernel = np.random.uniform(

-0.5, 0.5, size=(len(stabilizer), kernel_width, kernel_width, 3, 3)
)

def conv(f, p=kernel):
@np_cache(maxsize=W**4)
def fxn(u):

# It is possible to do this without inner for
# loops over convolution (use a standard conv),
# but we do this for simplicity.
result = 0
for hi, h in enumerate(stabilizer):

for nix in range(-kernel_width // 2, kernel_width // 2 + 1):

(continues on next page)
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for niy in range(-kernel_width // 2, kernel_width // 2 + 1):
result += (

f(u @ make_n(-nix, -niy) @ np.linalg.inv(h))
@ kernel[hi, nix + kernel_width // 2, niy + kernel_width // 2]

)
return sigmoid(result)

return fxn

# compute convolution
cout = conv(lift(pix_func))
# try it out an a group element
cout(g)

array([0.08769476, 0.82036708, 0.99128031])

At this point our convolution layer has returned a function over all group elements. We can visualize this by viewing each
stabilizer element individually across the normal subgroup. This is like plotting each coset with a choice of representative
element.

def plot_coset(h, f, ax):
"""plot a function over group elements on cosets given representative g"""
gridx, gridy = np.meshgrid(

np.arange(-W // 2, W // 2), np.arange(-W // 2, W // 2), indexing="ij"
)
# make it into batched x,y indices and add dummy 1 indices for augmented space
batched_idx = np.vstack(

(gridx.flatten(), gridy.flatten(), np.ones_like(gridx.flatten()))
).T
values = np.zeros((W**2, 3))
for i, bi in enumerate(batched_idx):

values[i] = f(h @ make_n(bi[0], bi[1]))
ax.imshow(values.reshape(W, W, 3), origin="upper")
ax.axis("off")

# try it with mirror
plt.figure(figsize=(2, 2))
plot_coset(make_h(0, 1), lift(pix_func), ax=plt.gca())

Now we will plot our convolution for each possible coset representative. This code is incredibly inefficient because we
have so many loops in plotting and the convolution. This is where the np_cache from above helps.
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stabilizer_names = ["$e$", "$r$", "$r^2$", "$r^3$", "$s$", "$rs$", "$r^2s$", "$r^3s$"]
fig, axs = plt.subplots(2, 4, figsize=(8, 4))
axs = axs.flatten()
for i, (n, h) in enumerate(zip(stabilizer_names, stabilizer)):

ax = axs[i]
plot_coset(h, cout, ax)
ax.set_title(n)

These convolutions are untrained, so it’s sort of a diffuse random combination of pixels. You can see each piece of the
function broken out by stabilizer group element (the rotation/mirroring). We can stackmultiple layers of these convolution
if we wanted. At the end, we want to get back to our space with the projection. Let us now show our layers are equivariant
by applying a G-function transform to input and output.

fig, axs = plt.subplots(1, 3, squeeze=True)
plot_func(project(cout), ax=axs[0])
axs[0].set_title(r"$\psi\left[f(g)\right]$")

# make a transformation for visualization purposes
g = make_h(np.pi, 0) @ make_n(-10, 16)
tfunc = g_func_trans(g, project(cout))
plot_func(tfunc, ax=axs[1])
axs[1].set_title(r"$\mathbb{T}\psi\left[f(g)\right]$")

tcout = project(conv(lift(g_func_trans(g, pix_func))))

plot_func(tcout, ax=axs[2])
axs[2].set_title(r"$\psi\left[\mathbb{T}f(g)\right]$")
plt.show()
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This shows that the convolution layer is indeed equivariant. Details not covered here are how to do pooling (if desired)
and the choice of nonlinearity. You can find more details on this for the p4m group in Cohen et al. [CW16]. This
implementation is also quite slow! Kondor et al. [KT18] show how you can reduce the number of operations by identifying
sparsity in the convolutions.

10.9 Group Representation

p4m was an infinite group but we restricted ourselves to a finite subset. Before we can progress to move to truly infinite
locally compact groups, like SO(3), we need to learn how to systematically represent the group element binary operation.
You can find a detailed description of representation theory in Serre [Ser77] and it is covered in Zee [Zee16]. Thus
far, we’ve discussed the group actions – how they affect a point. Now we need to describe how to represent them with
matrices. This will be a very quick overview of this topic, but representation of groups is a large area with well-established
references. There is specifically a great amount of literature about building up these representations, but we’ll try to focus
on using them since you generally can look-up the representations for most groups we’ll operate in.
Let us first define a representation on a group:

Linear Representation of a Group
Let𝐺 be a group on an 𝑛-dimensional vector space𝒳 . A linear representation of𝐺 is a group homomorphism: 𝜌 ∶ 𝐺 →
𝐺𝐿(𝑚, ℂ) where𝐺𝐿(𝑚, ℂ) is the space of𝑚×𝑚 square invertible matrices with complex numbers. The representation
𝜌 should satisfy the following equation

𝜌 (𝑔1 ⋅ 𝑔2) = 𝜌 (𝑔1) 𝜌 (𝑔2) ∀ 𝑔1, 𝑔2 ∈ 𝐺 (10.13)

where the term 𝜌 (𝑔1) 𝜌 (𝑔2) is a matrix product.

There are a few things to note about this definition. First, the representation assigns matrices to graph elements in
such a way that multiplying matrices gives the same representation as getting the representation of the binary operation
(𝜌 (𝑔1 ⋅ 𝑔2)). Second, the matrices have to be square and invertible. This follows from the requirement that group ele-
ments must have an inverse, so naturally we need invertible matrices. The invertible requirement also means often need
to allow complex numbers. Third, the degree of the representation (𝑚) need not be the same size as the vector space.
There is a big detail missing from this definition. Does this have anything to do with how the group element affect a
point? No. Consider that 𝜌(𝑔𝑖) = 1 is a valid representation, as in it satisfies the definition. Yet 1 is not the correct way
to transforms points with group elements. If we go further and say that the representation is injective (one to one), then
we must have a unique representation for every group element. That is called a faithful representation. This is better,
but it turns out there are still multiple faithful representations for a group.
Remember the way a group affects a point is a group action, which maps from the direct product of 𝐺, 𝒳 (i.e., a tuple
like (𝑔2, 𝑥) to 𝒳). A group action, if it is linear, can also be a representation. Consider that we write the group action
𝜋 (how a group element affects a point) as 𝜋(𝑔)(𝑥) = 𝑥′. You can convert this into a square matrix in 𝒳 × 𝒳 by
considering how each element of 𝑥′ is affected the element in 𝑥. This matrix can be further shown to be in 𝐺𝐿(𝑚, 𝒳)
and a representation by relying on its linearity. There isn’t a special word for this, but often groups are defined in terms
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of these special matrices that both transforms points and are valid representations (e.g., SO(3)). They are then called the
defining representation or fundamental representation.
Let’s now see group representations on the examples above that are both group actions and representations.

� Finite Group 𝑍6

Our group action defined above was modular arithmetic, which is not linear and so we cannot use it to construct repre-
sentation. There are multiple representation for cyclic groups like 𝑍6. If you’re comfortable with complex numbers, you
can build circulant matrices of 6th roots of unity. If that confuses you, like it does me, then you can also just view this
group like a rotation group. Just like how if you rotate enough times you get back to the beginning, you can also use
rotation matrices of 360/6 = 60∘. This requires a 2D vector representation though for the space. With this choice, a
representation is:

[ cos 𝑘2𝜋
6 − sin 𝑘2𝜋

6
sin 𝑘2𝜋

6 cos 𝑘2𝜋
6

] , 𝑘 ∈ {0, 1, 2, 3, 4, 5}

Let’s verify that this is a representation by checking that 𝑟2 ⋅ 𝑟4 = 𝑒

[ cos 4𝜋
6 − sin 4𝜋

6
sin 4𝜋

6 cos 4𝜋
6

] [ cos 8𝜋
6 − sin 𝑘2𝜋

6
sin 8𝜋

6 cos 8𝜋
6

] = [ cos 12𝜋
6 − sin 12𝜋

6
sin 12𝜋

6 cos 12𝜋
6

] = [ 1 0
0 1 ]

You can also verify that this is a group action by repeated application to the point (1, 0), which will rotate around the unit
circle.

� Locally Compact p4m

Our group action defined above for the translation elements is not linear. To define a representation, we can use Affine
Matrices which are 3 × 3 invertible square matrices. That means even though our goal is 2D data, we need to introduce
a 3rd dimension: (𝑥, 𝑦, 1). The 3rd dimension is always 1 and is called the augmented dimension. To specify a group
representation we simply need to multiply an affine matrix for rotation, reflection, and translation (in that order!). These
are:
Rotation:

⎡⎢
⎣

cos 𝑘𝜋
4 − sin 𝑘𝜋

4 0
sin 𝑘𝜋

4 cos 𝑘𝜋
4 0

0 0 1
⎤⎥
⎦

, 𝑘 ∈ {0, 1, 2, 3}

Reflection:

⎡⎢
⎣

1 0 0
0 −1 0
0 0 1

⎤⎥
⎦

Translation:

⎡⎢
⎣

1 0 Δ𝑥
0 1 Δ𝑦
0 0 1

⎤⎥
⎦

It is a bit more involved to verify this is a group representation, but you can try a few group element products to convince
yourself. Do not forget the special homomorphism (conjugate 𝜙(ℎ)(𝑛)) for semidirect products when multiplying group
element, which ensures the correct behavior if rearrange the order of the matrices.
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� SO(3) Group

A representation of the SO(3) group is just its usual group action: the product of 3 3D rotation matrices
𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑧(𝛾) where 𝛼, 𝛾 ∈ [0, 2𝜋], 𝛽 ∈ [0, 𝜋] and the matrices are defined above.

10.9.1 Unitary Representations

One minor detail is that if we have some representation 𝜌(𝑔1)𝜌(𝑔2) = 𝜌(𝑔1 ⋅ 𝑔2), then we could make a “new” represen-
tation 𝜌′ by inserting some invertible matrix S:

𝜌′(𝑔) = S−1𝜌(𝑔)S

because

𝜌′(𝑔1)𝜌′(𝑔2) = S−1𝜌(𝑔1)SS−1𝜌(𝑔2)S

= S−1𝜌(𝑔1)𝜌(𝑔2)S = 𝜌′(𝑔1 ⋅ 𝑔2)
There is a theorem, the Unitarity Theorem, that says we can always choose an S (for finite groups) such that we make
our representation unitary. Unitary means that 𝜌(𝑔)−1 = 𝜌†(𝑔) for any 𝑔. Remember that 𝜌(𝑔) is a matrix, so 𝜌†(𝑔)
is the adjoint (transpose and complex conjugate) of the matrix. Thus, without any loss of generality we can assume all
representations we use are unitary or can be trivially converted to unitary.

10.9.2 Irreducible representations

These representations that both describe the group action and how group elements affect on another are typically re-
ducible, meaning if you drop the requirement that they also describe group action they can be simplified. The process
of reducing representations is again a topic better explored in other references [Ser77], but here I will sketch out the
important ideas. The main idea is that we can form decomposable unitary representation matrices that are composed of
smaller block matrices and zero blocks. These smaller blocks, 𝜌𝑖(𝑔), are irreducible— they cannot be broken into smaller
blocks and zeros

𝜌(𝑔) = S−1 ⎛⎜⎜⎜
⎝

𝜌0(𝑔) 0 ⋯ 0
0 𝜌1(𝑔) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜌𝑘(𝑔)

⎞⎟⎟⎟
⎠

S (10.14)

This block notation is consistent, regardless of 𝑔. That is a strong statement because 𝜌(𝑔1)𝜌(𝑔2) should give back an
element in 𝒢 — 𝜌(𝑔′) — with the same block structure. What is interesting about this notation is that each block is
then itself a representation. We could just pick 𝜌0(𝑔) as a representation, and if this block structure is true for all 𝑔,
then 𝜌0(𝑔1)𝜌0(𝑔2) should give back something with non-zero elements only in the rows/columns of the 𝜌0(𝑔) block. We
could also combine 𝜌0(𝑔) and 𝜌1(𝑔) or even 𝜌0(𝑔) and 𝜌2(𝑔). Thus, these irreducible representations (irreps) are the
pieces that we use to build any other representation. The irreducible representations are all dimension 1 if 𝒢 is abelian,
but otherwise irreducible representations are square matrices.
To add some notation, we use direct sums to write the bigger unitary representation:

𝜌(𝑔) = S−1 ⎛⎜⎜⎜
⎝

𝜌0(𝑔) 0 ⋯ 0
0 𝜌1(𝑔) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜌𝑘(𝑔)

⎞⎟⎟⎟
⎠

S = 𝜌0(𝑔) ⊕ 𝜌1(𝑔) ⊕ … ⊕ 𝜌𝑘(𝑔) (10.15)

and we could just stop the direct sum wherever we would like. The number of irreducible representations is finite for finite
groups and infinite for locally compact groups. These irreducible representations are like orthonormal basis-functions or
basis-vectors fromHilbert spaces. From the Peter-Weyl theorem, they specifically can be transformed to create a complete
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basis-set for integrable (𝐿2) functions of the group. “Transformed” because irreducible representations are representations
of 𝑔 ( output a matrix), but we need them to output a scalar to be a basis-set for an integrable function.
Where do we get these integrable functions? Recall we can use lifting to move functions of our space to our group and then
these irreducible representations enable us to represent the functions as a (direct) sum of coefficients of the irreducible
representations. Remember, each individual irreducible representation is itself a valid representation, but they are not
all faithful and so you need some of them to uniquely represent all group elements and all of them to represent arbitrary
functions over the group. One final note, these irreducible representations have been essentially mapped out for all groups
and thus we look them up in table rather than try to construct them.

10.10 G-Equivariant Convolutions on Compact Groups

Now we can represent functions on groups as a direct sum (list of increasing length vectors) of coefficients on the irreps.
Namely 𝑓(𝑔) = 𝑓0 ⋅ 𝜌0(𝑔) ⊕ ⃗𝑓1 ⋅ 𝜌1(𝑔) ⊕ … ⊕ ⃗𝑓𝑘 ⋅ 𝜌𝑘(𝑔). Remember the direct sum notation ⊕ is just a shorthand
that means put all this stuff into a big matrix of increasingly large blocks. The individual ⃗𝑓𝑖s are called fragments to
distinguish them from the actual irreps (which are functions).
Since the group is not changing, we could even more compactly write this as 𝑓(𝑔) = 𝑓0 ⊕ ⃗𝑓1 ⊕ … ⊕ ⃗𝑓𝑘. We’d like to
revise the G-Equivariant convolution layer equation:

𝜓(𝑓) = (𝑓 ∗ 𝜔)(𝑢) = ∫
𝐺

𝑓 ↑𝐺 (𝑢𝑔−1) 𝜔 ↑𝐺 (𝑔) 𝑑𝜇(𝑔) (10.16)

to use irreps now. It turns out that the convolutional integral becomes a product of irreps. [KT18]. Our expression simplifies
to:

𝜓(𝑓) = 𝑓0𝑤0 ⊕ ⃗𝑓1𝑤1 ⊕ … ⊕ ⃗𝑓𝑘𝑤𝑘 (10.17)

This result says we just multiply the irreducible representations by weights, but do not mix across irreps. The weights
become matrices if we start to allow multiple channels (multiple fragments). An important point then is how we actually
can learn if there is no communication between irreps. That’s where the nonlinearity comes in. It is discussed in more
depth below, but the most common nonlinearity is to take a tensor product (all irreps times all irreps) and then reduce that
by multiplying the larger rank tensor by a special tensor for the group called Clebsch-Gordan coefficients that reduces it
equivariantly back down to the direct sum of irreps. This enables mixing between the irreps and is nonlinear.

10.10.1 Irreducible representations on SO(3)

There is an infinite sequence of possible irreducible representations for the SO(3) group known as theWigner D-matrices.
They must be of odd dimension, and so are traditionally written as the sequence 2𝑙 + 1 where 𝑙 is an integer that serves
as the irreducible representation index. The Wigner D-matrices are square with dimension 2𝑙 + 1 and are a function
of the group element (e.g., the angles of the rotation). This may be surprising, that the irreducible representations can
be of greater dimension than our reducible representation 𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑧(𝛾). The easiest way to think about this is to
consider SO(3) acting on 3 dimensional 𝑛𝑡ℎ degree monomials rather than points: 𝑥𝑖𝑦𝑗𝑧𝑘 where 𝑙 = 𝑖 + 𝑗 + 𝑘. The
trivial representation works on the 0th degree monomial (𝑙 = 0), the 𝑙 = 1 irrep has three possible monomials (𝑥, 𝑦, 𝑧),
the 𝑙 = 2 irrep has 5 possible monomials (excluding a redundant term). You can find a nice description of this here.
What 𝑙 should you choose? It depends on your input and output. If you choose 𝑙 = 0, you can only represent scalars (not
points/vectors). If you choose 𝑙 = 1, you can represent vectors. You can always pick a larger 𝑙, but if you pick a lower 𝑙
you will become invariant to the higher-order geometric structure.

The reason you just plug in the values into the spherical harmonics is you’re (1) turning your data into a dirac-delta
function and (2) taking its integral over all the irreps, which turns out to be the same as plugging in the value.
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Our choice of Euler Angles (zyz rotation) means that the Wigner D-matrices turn into spherical harmonics. Now how do
we get our input data, into the irrep for the group SO(3)? You just plug the input coordinates/features into the spherical
harmonics. Have multiple scalar features (e.g., charge, atomic number) – you simply add another axis to the irreps and
create multiple “channels”. Another detail is that our weight size seems to be set by the irrep size. How do we get wider
layers (more weights)? The same way: by adding more channels to each irrep.

10.10.2 SO(3) Nonlinearity & Mixing

There are two equations for equivariant nonlinearity in SO(3), and they are sometimes combined. The first nonlinearity
is a Clebsch-Gordan tensor product and enables mixing between irreps. The equation is

⃗𝑓 ′
𝑖 = ∑

𝑗
∑

𝑘
CG𝑗,𝑘,𝑖 ⋅ ⃗𝑓𝑗 ⃗𝑓𝑘 (10.18)

where CG𝑗,𝑘,𝑖 are the Clebsch-Gordan coefficients that ensure we maintain equivariance after multiplying all irreps with
all irreps (and do a change of basis). This expression is sometimes written as CG𝑗,𝑘,𝑖 ⃗𝑓 ⊗ ⃗𝑓

As before, ⃗𝑓𝑖 are the fragments (coefficients) on the irreps that represent our function 𝑓(𝑔) of the group. The fragments
are usually computed directly by plugging in the coordinates into spherical harmonic equations. [KLT18] showed that this
is itself nonlinear, and thus a complete layer with nonlinearity would be that equation combined with Equation (10.17).
We may also choose to skip some of the terms, since this is an exepnsive equation.
There is another kind nonlinearity that is equivariant called gated nonlinearities [WGW+18]. The equation is simple; just
compute the magnitude of each of the irrep fragments ⃗𝑓𝑖 and put it through a traditional neural network nonlinearity (e.g.,
ReLU):

𝜎gated( ⃗𝑓𝑖) = 𝜎 (| ⃗𝑓𝑖|) ⃗𝑓𝑖

The gated nonlinearity is sometimes used instead of Equation (10.18) or as an extra step after it [TSK+18].
At the end of the network, most of the time we simply take the 𝑓0 scalar (the 𝑙 = 0 irrep fragment). We may have multiple
channels, so we don’t have one 𝑓0. But, often we are doing classification or predicting energy (and its derivative, forces)
and thus want a 𝑙 = 0 feature. The Clebsch-Gordan tensor products are essential to ensure mixing between the spatial
information at the higher dimensional irrep fragments and scalar input features like atomic number.

10.11 SO(3) Equivariant Example

Let’s implement a non-differentiable version of the equations above for the SO(3) group. To begin, let’s write the code to
convert our points into their irreps. Our code is not differentiable, so we won’t be able to train.

from scipy.special import sph_harm

def cart2irreps(x, l):
# convert to spherical coords to eval
N = x.shape[0]
r = np.linalg.norm(x, axis=-1)
azimuth = np.arctan2(x[:, 1], x[:, 0])
polar = np.arccos(x[:, 2], r)
f = []
for li in range(l):

fi = []
for m in range(-li, li + 1):

(continues on next page)
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y = sph_harm(m, li, azimuth, polar)
# convert to real
if m < 0:

y = np.sqrt(2) * (-1) ** m * y.imag
elif m > 0:

y = np.sqrt(2) * (-1) ** m * y.real
fi.append(y.real)

fi = np.array(fi)
f.append(fi.reshape(N, 2 * li + 1))

return f

def print_irreps(f):
for i in range(len(f)):

print("irrep", i)
print(f[i])

points = np.random.rand(2, 3)
# make them be on unit sphere
points /= np.linalg.norm(points, axis=-1)[:, np.newaxis]
M = 3 # number of irreps
f = cart2irreps(points, M)
print_irreps(f)

irrep 0
[[0.28209479]
[0.28209479]]

irrep 1
[[0.30938929 0.35978765 0.34151954]
[0.25147992 0.16240408 0.21457659]]

irrep 2
[[-0.229949 -0.3533116 0.48355975 0.41407486 0.14687347]
[-0.06474223 0.25382933 0.24695337 -0.15868095 -0.19084746]]

We chose to use 3 irreps here and get a fragment vector for each particle at each irrep. This gives a scalar for 𝑙 = 0 irrep,
a 3 dimensional vector for 𝑙 = 1, and a 5 dimensional vector for 𝑙 = 2 irrep. It’s a choice, but usually you’ll see networks
encode a 3D point into the 𝑙 = 1 irrep because it’s the smallest irrep that won’t become invariant. This also allows a sort
of separation of input features, where we can put scalar properties like mass or element into the 𝑙 = 0 irrep and the point
position into the 𝑙 = 1 irrep. Often, you’ll also see multiple channels (multiple sets of fragments at a given irrep) to add
expressiveness.
Notice that 𝑙 = 0 is the same for both points - that’s because that spherical harmonic is constant. Another reason why we
put scalar quantities there.
Let’s now implement the linear part - Equation (10.17). We’ll have channels now, since otherwise we get a single weight.

def linear(f, W):
for l in range(len(f)):

# promote to have channels, if not yet
if len(f[l].shape) == 2:

f[l] = f[l][..., None]
f[l] = np.einsum("ijk,kl->ijl", f[l], W[l])

return f

(continues on next page)
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def init_weights(cin, cout):
return np.random.randn(M, cin, cout)

weights = init_weights(1, 4)
h = linear(f, weights)
print(h)

[array([[[-0.31297784, -0.154452 , 0.18786586, -0.71498461]],

[[-0.31297784, -0.154452 , 0.18786586, -0.71498461]]]), array([[[-0.
↪42546735, 0.15500163, -0.14858391, 0.28962165],

[-0.49477439, 0.18025082, -0.17278767, 0.33679993],
[-0.46965237, 0.17109864, -0.16401443, 0.31969902]],

[[-0.34583128, 0.12598949, -0.12077299, 0.23541225],
[-0.22333557, 0.08136318, -0.0779944 , 0.15202768],
[-0.2950824 , 0.10750121, -0.1030502 , 0.20086677]]]), array([[[-0.

↪1860702 , 0.27550026, -0.09351039, -0.27632922],
[-0.28589279, 0.42330012, -0.14367667, -0.4245738 ],
[ 0.39128702, -0.57934949, 0.196643 , 0.58109271],
[ 0.33506122, -0.49610014, 0.16838648, 0.49759287],
[ 0.11884712, -0.17596806, 0.05972714, 0.17649754]],

[[-0.05238814, 0.0775672 , -0.02632789, -0.0778006 ],
[ 0.20539369, -0.30411111, 0.10322149, 0.30502616],
[ 0.1998298 , -0.29587308, 0.10042534, 0.29676334],
[-0.1284015 , 0.19011452, -0.06452873, -0.19068656],
[-0.15443 , 0.22865298, -0.07760947, -0.22934098]]])]

You can see that we now have multiple channels at each irrep.
Now we’ll implement the Clebsch-Gordan nonlinearity, Equation (10.18). We’ll use the coefficients in sympy.

from sympy.physics.quantum.cg import CG
from sympy import S
from functools import lru_cache

# to speed-up repeated calls, put a cache around it
@lru_cache
def cg(i, j, k, l, m, n):

# to get a float, we wrap input in symbol (S), call
# doit, and evalf.
r = CG(S(i), S(j), S(k), S(l), S(m), S(n)).doit().evalf()
return float(r)

# As you can see, the Clebsch-Gordan nonlinearity is a lot!!
def cgnl(f):

output = [np.zeros_like(fi) for fi in f]
# m,n -> outputs
for i in range(len(f)):

for j in range(-i, i + 1):

(continues on next page)
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for k in range(len(f)):
for l in range(-k, k + 1):

for m in range(len(f)):
for n in range(-m, m + 1):

output[m][:, n] += (
f[i][:, j] * f[k][:, l] * cg(i, j, k, l, m, n)

)
return output

cgnl(h)

[array([[[0.42489967, 0.4032353 , 0.0964734 , 0.94690111]],

[[0.11165005, 0.03936491, 0.03783205, 0.52913038]]]),
array([[[ 0.24885549, -0.05730307, -0.05889344, -0.39649116],

[-0.05000888, -0.24971277, -0.12805358, -0.11797142],
[ 0.14781777, -0.13169458, -0.08727785, -0.30940054]],

[[ 0.16494686, -0.06671324, -0.05442168, -0.28454164],
[ 0.13365903, -0.0284449 , -0.03038242, -0.21118876],
[ 0.18040701, -0.0355278 , -0.03947416, -0.28288486]]]),

array([[[ 0.55749603, 0.18656926, 0.03216769, 0.77978823],
[ 0.50911544, -0.02010282, -0.00947985, 0.81664941],
[-0.13146835, -0.07648033, 0.07056881, -1.00717992],
[-0.06505638, 0.01613839, 0.07100045, -0.77672149],
[ 0.09459735, -0.15717732, 0.02821465, -0.37198278]],

[[ 0.1384026 , -0.10437677, -0.00300055, 0.08031154],
[-0.05399183, 0.03246938, 0.04335287, -0.46199106],
[-0.11401494, 0.01293701, 0.03401445, -0.48684213],
[ 0.15902584, -0.06563252, -0.01575307, 0.29445021],
[ 0.2021304 , -0.13665679, -0.02137265, 0.30913128]]])]

Now we can make our complete layer! We won’t use a gated nonlinearity here, just the Clebsch-Gordan nonlinearity.

def cg_net(x, W, l, num_layers):
f = cart2irreps(x, l)
for i in range(num_layers):

f = linear(f, W[i])
f = cgnl(f)

return np.squeeze(f[0])

num_layers = 3
L = 3
channels = 4
weights = (

[init_weights(1, channels)]
+ [init_weights(channels, channels) for _ in range(num_layers - 2)]
+ [init_weights(channels, 1)]

)

cg_net(points, weights, L, num_layers)
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array([5.71056675e+01, 2.06055946e-02])

Now we have our irrep features. How do we get an output? If we’re trying to output a scalar (regression/classification),
we would just take the 𝑙 = 0 irrep fragment. If we instead would like something more geometric, we can integrate over
the spherical harmonics (analogous to inverse Fourier Transform). Or, you can read out the point at which the spherical
harmonics are maximized.
Let us now check that our network is indeed invariant (we’re outputting a single value per point, so invariant). We’ll make
a rotation and check if our output changes.

# random 3x3 matrix
R = np.random.rand(3, 3)
# make it a member of SO(3)
U, _, V = np.linalg.svd(R)
R = np.dot(U, V)

print(cg_net(points, weights, L, num_layers))
print(cg_net(points @ R, weights, L, num_layers))

[5.71056675e+01 2.06055946e-02]
[4.52543928 0.30593967]

As you can see, something is broken and I need to fix it when I have time.

10.12 Equivariant Neural Networks with Constraints

You do not need to use irreducible representations. It is currently in 2022 the dominant paradigm due to its good accuracy.
One alternative is to work in the defining/faithful representation and put equivariant constraints on your network weights.
This approach is quite nice because the implementation is independent of the group. It also works for finite groups. Let’s
see an example of this approach via the library released by the authors called Equivariant MLP (emlp)[FWW21]
We’ll create an SO(3) equivariant neural network and check that it is equivariant to rotations. We begin by defining our
group and its representation. I’ll show a few elements too, to demonstrate that this is the faithful representation and not
the irreducible.

from emlp.groups import SO, S
import emlp.reps as reps
import emlp
import haiku as hk
import emlp.nn.haiku as ehk
import jax.numpy as jnp

so3_rep = reps.V(SO(3))
# grab a random group element
sampled_g = SO(3).sample()
dense_rep = so3_rep.rho(sampled_g)
# check its a member of SO(3)
# g @ g.T = I
print(dense_rep @ dense_rep.T)

WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0␣
↪and rerun for more info.)
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[[ 1.0000001e+00 -9.0145235e-08 -3.6942627e-08]
[-9.0145235e-08 1.0000000e+00 3.4498189e-08]
[-3.6942627e-08 3.4498189e-08 9.9999994e-01]]

Now we’ll apply our group element to a point to see it rotate the point. The norm should be unchanged, because it’s a
rotation.

point = np.array([0, 0, 1])
print("new point", dense_rep @ point.T)
print("norm", np.sqrt(np.sum((dense_rep @ point) ** 2)))

new point [ 0.2110719 -0.73052925 -0.6494426 ]
norm 1.0

Now let’s assume our input function consists of 5 points (e.g., methanol molecule) defined by features (e.g., 1D element
embedding) and positions. We’ll create that as a direct sum of 5 scalars and 5 vectors. Our output will be a vector (e.g.,
dipole). Equivariance here will then mean that if rotate the input points, our output vector should undergo the same
rotation.

input_rep = 5 * so3_rep**0 + 5 * so3_rep**1
print("input rep", input_rep)
print("output rep", so3_rep)

input_point = np.random.randn(5 + 5 * 3)
print("input features", input_point[:5])
print("input positions\n", input_point[5:].reshape(5, 3))

input rep 5V⁰+5V
output rep V
input features [-0.30458234 -1.89067604 0.97765169 -0.18302214 0.59400493]
input positions
[[ 0.54096229 -0.44211156 -0.5074754 ]
[-0.71190593 1.1881366 -1.81726978]
[-1.48572616 -0.69015372 3.02716867]
[-1.24053084 0.07303629 0.19194001]
[ 0.59835643 -0.70481736 1.01966388]]

model = emlp.nn.EMLP(input_rep, so3_rep, group=SO(3), num_layers=1)
output_point = model(input_point)
print("output", output_point)

output [ 0.0028723 0.00271391 -0.02050202]

Now we’ll transform the input points according to a random element in the group. We could convert the input into the
five spatial vectors and apply the group element to them individually and put them back together. However, emlp has a
convenience function for exactly that. We can change our group element to the input representation.

trans_input_point = input_rep.rho_dense(sampled_g) @ input_point
print("transformed input features", trans_input_point[:5])
print("transformed input positions\n", trans_input_point[5:].reshape(5, 3))
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transformed input features [-0.30458233 -1.890676 0.9776517 -0.18302214 0.
↪5940049 ]

transformed input positions
[[ 0.5648738 0.3965097 0.5189717 ]
[-1.7186793 0.9593498 1.1604906 ]
[ 0.20919645 -1.2322842 -3.207048 ]
[-0.8010346 0.31936038 -0.91512 ]
[ 1.1189423 -0.5973959 -0.5344146 ]]

Now we compare running the transformed input through the model against applying the group element to the output from
the untransformed input.

model(trans_input_point), sampled_g @ output_point

(DeviceArray([-0.00452228, 0.01232371, 0.01623649], dtype=float32),
DeviceArray([-0.00452229, 0.01232371, 0.01623649], dtype=float32))

Indeed they are equivalent – meaning this model is equivariant. The constraint approach is quite simple to use and can
handle arbitrary groups. However, it may not be efficient when working with many input points (like a protein) and it may
make sense to use an implementation specific to E(3) or SO(3).

10.12.1 How the constraints work

How does this magic happen? Rather than explicitly setting constraints on the dense layer weights, emlp always first
projects the network weights into an equivariant subspace. This means that the cost of equivariance is paid when
constructing the model when this projection matrix is found but not later during training and inference. The equivariant
subspace is the space of allowed weights that respect the equivariance. Let’s see what this looks like.
Recall that a dense layer has the equation:

𝑦 = 𝜎 (𝑊𝑥 + 𝑏) (10.19)
where 𝜎 is a special nonlinearity for equivariant neural networks we won’t discuss here (see [WGW+18]). To respect the
equivariance, 𝑊, 𝑏 will need to be projected into an equivariant subspace that depends on our group and input/output
representations. So our modified equation would look like:

𝑦 = 𝜎 (𝑃𝑤𝑊𝑥 + 𝑃𝑏𝑏) (10.20)

Let’s start by making these projectors. 𝑃𝑏 only will need to consider the output rep, since 𝑏 is the bias (same representation
as output).

Pw = (input_rep >> so3_rep).equivariant_projector()
Pb = (so3_rep).equivariant_projector()

print("Pw shape is", Pw.shape, "Pb shape is", Pb.shape)

Pw shape is (60, 60) Pb shape is (3, 3)

Note that they are square because they should leave the underlying dimension of 𝑊 unchanged – we are not projecting to
a reduce dimension, but a subspace within the space of possible values of the weights. Remember too our representations
are flattened - that 60 comes from the fact that our weight matrix is 3 × (5 + 15).
Now let’s show how these projectors can convert an arbitrary weight matrix into one that is equivariant.
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W = np.random.randn(3, 5 + 5 * 3)
b = np.random.randn(3)

print(
"W is not alone equivariant",
W @ trans_input_point.flatten(),
"!=",
sampled_g @ W @ input_point,

)

W is not alone equivariant [ -3.1314962 -12.084191 11.542714 ] != [12.0744295 -2.
↪836445 3.0263994]

Proj_W = (Pw @ W.flatten()).reshape(W.shape)
print(

"Projected W is equivariant",
Proj_W @ trans_input_point.flatten(),
"==",
sampled_g @ Proj_W @ input_point,

)

Projected W is equivariant [-1.0771619 1.4464636 1.667451 ] == [-1.077162 1.
↪4464636 1.6674511]

You may be wondering how much the projection affects 𝑊 . Is there enough flexibility that you can learn? We can
compare the full random matrix 𝑊 vs it’s projection.

plt.title("Random W")
plt.imshow(W)
plt.show()
plt.title("Projected W")
plt.imshow(Proj_W)
plt.show()

It appears that there are only a few unique values in 𝑊 after projection, so that our weight space is effectively much
lower dimensional. This is why it’s important to have multiple channels! This also demonstrates why emlp can be more
expensive. We’re training 180 values but we could have just used a few. Similarly, the projected bias is zero for our
system.
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Pb @ b

DeviceArray([0., 0., 0.], dtype=float32)

10.12.2 Including Permutation Groups

In real molecules, we also need to have permutation equivariance with respect to the atom ordering and bond ordering –
which is not true of our above example about computing dipole moment. emlp also supports permutation groups, which
are usually written as 𝑆𝑛, where 𝑛 is the number of permutable elements in the group. We’ll work on that in the next
chapter.

10.13 Chapter Summary

• Equivariant neural networks guarantee equivariance by construction for arbitrary groups, which removes the need
to align trajectories, work in special coordinate systems, or use pairwise distances.

• Equivariance can be achieved by parameter sharing or testing/training data augmentation, but here we focused on
equivariant layers that can be composed into a neural network.

• Equivariance requires definition of a group and homogeneous space. We must view our input data as functions and
our models as operators that transform functions.

• Finite groups can be treated with G-equivariant layers that have an additional sum across the number of group
elements.

• Infinite groups like SO(3) can be made finite by working with a direct sum (list of vectors) of the irreducible
representations. This requires converting the input data though to the irreducible representation and there are
complexities in nonlinearities and implementations typically must be written per-group.

• Constraint-based equivariant layers are flexible, general, and quick to implement but may not scale well with respect
to size of input group or number of points.

• Recent work has also shown you can put irreducible representation direct sums into the edges of graph neural
networks, gaining input size independence, permutation invariance, and spatial equivariance in one model.

10.14 Relevant Videos

10.14.1 Intro to Geometric Deep Learning

10.14.2 Equivariant Networks

10.14.3 Equivariant Network Tutorial

watch here
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CHAPTER

ELEVEN

MODERN MOLECULAR NNS

We have seen two chapters about equivariances in Input Data & Equivariances and Equivariant Neural Networks. We
have seen one chapter on dealing with molecules as objects with permutation equivariance Graph Neural Networks. We
will combine these ideas and create neural networks that can treat arbitrary molecules with point clouds and permutation
equivariance. We already saw SchNet is able to do this by working with an invariant point cloud representation (distance
to atoms), but modern networks mix in ideas from Equivariant Neural Networks. This is a highly-active research area,
especially for predicting energies, forces, and relaxed structures of molecules.

Audience & Objectives
This chapter assumes you have read Input Data & Equivariances, Equivariant Neural Networks, and Graph Neural Net-
works. You should be able to

• Categorize a task (features/labels) by equivariance
• Understand body-ordered expansions
• Differentiate models based on their message passing, message type, and body-ordering

Warning: This chapter is in progress
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CHAPTER

TWELVE

EXPLAINING PREDICTIONS

Neural network predictions are not interpretable in general. In this chapter, we explore how to explain predictions.
This is part of the broader topic of explainable AI (XAI). These explanations should help us understand why particular
predictions are made. This is a critical topic because being able to understand model predictions is justified from a
practical, theoretical, and increasingly a regulatory stand-point. It is practical because it has been shown that people
are more likely to use predictions of a model if they can understand the rationale [LS04]. Another practical concern
is that correctly implementing methods is much easier when one can understand how a model arrived at a prediction.
A theoretical justification for transparency is that it can help identify incompleteness in model domains (i.e., covariate
shift)[DVK17]. It is now becoming a compliance problem because both the EuropeanUnion [GF17] and theG20 [Dev19]
have recently adopted guidelines that recommend or require explanations for machine predictions. The European Union
is considering going further with more strict draft legislation being considered.

Audience & Objectives
This chapter builds on Standard Layers andDeep Learning on Sequences. It also assumes a good knowledge of probability
theory, including conditional probabilities. You can read my notes or any introductory probability text to get an overview.
After completing this chapter, you should be able to

• Justify why explanations are important
• Distinguish between justification, interpretation, and explanation
• Compute feature importance and Shapley values
• Define a counterfactual and compute them
• Know which models are interpretable and how to fit interpretable surrogate models

A famous example on the need for explainable AI is found in Caruana et al.[CLG+15] who built an ML predictor to
assess mortality risk of patients in the ER with pneumonia. The idea is that patients with pneumonia are screened with
this tool and it helps doctors know which patients are more at risk of dying. It was found to be quite accurate. When
the interpretation of its predictions were examined though, the reasoning was medically insane. The model surprisingly
suggested patients with asthma (called asthmatics) have a reduced mortality risk when coming to the ER with pneumonia.
Asthma, a condition which makes it difficult to breathe, was found to make pneumonia patients less likely to die. This
was incidental; asthmatics are actually more at risk of dying from pneumonia but doctors are acutely aware of this and
are thus more aggressive and attentive with them. Thanks to the increase care and attention from doctors, there are
fewer mortalities. From an empirical standpoint, the model predictions are correct. However if the model were put into
practice, it could have cost lives by incorrectly characterizing asthmatics as low mortality risk. Luckily the interpretability
of their model helped researchers identify this problem. Thus, we can see that interpretation should always be a step in
the construction of predictive models.
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12.1 What is an explanation?

We’ll use the definition of explanation from Miller [Mil19]. Miller distinguishes between interpretability, justification,
and explanation with the following definitions:

• interpretability “the degree to which an observer can understand the cause of a decision”. Miller considers this
synonymous with explainability. This is a generally a property of a model.

• justification evidence or explanation of why a decision is good, like testing error or accuracy of a model. This is
a property of a model.

• explanation explanations are a presentation of information intended for humans that give the context and cause
for an outcome. These are the major focus of this chapter. This is generally something extra we generate and not a
property of a model.

We will dig deeper into what constitutes an explanation, but note an explanation is different than justifying a prediction.
Justification is what we’ve focused on previously: empirical evidence for why we should believe model predictions are
accurate. An explanation provides a cause for the prediction. Ultimately, explanations are intended to be understood by
humans.
Deep learning alone is a black box modeling technique. It not interpretable or explainable. Examining the weights or
model equation provides little insight into why predictions are made. Thus, interpretability is an extra task and means
adding an explanation to predictions from the model. This is a challenge because of both the black box nature of deep
learning and because there is no consensus on what exactly constitutes an “explanation” for model predictions [DVK17].
For some, interpretability means having a natural language explanation justifying each prediction. For others, it can be
simply showing which features contributed most to the prediction.
There are two broad approaches to interpretation of ML models: post hoc interpretation via explanations and self-
explaining models [MSK+19]. Self-explaining models are constructed so that an expert can view output of the model and
connect it with the features through reasoning. They inherently interpretable. Self-explainingmodels are highly dependent
on the task model[MSMuller18]. A familiar example would be a physics based simulation like molecular dynamics or a
single-point quantum energy calculation. You can examine the molecular dynamics trajectory, look at output numbers,
and an expert can explain why, for example, the simulation predicts a drug molecule will bind to a protein.
It may seem like self-explaining models would be useless for deep learning interpretation. However, we will see later that
we can create a surrogate model (sometimes proxy model) that is self-explaining and train it to agree with the deep
learning model. Why will this training burden be any less than just using the surrogate model from the beginning? We can
generate an infinite amount of training data because our trained neural network can label arbitrary points. You can also
construct deep learning models which have self-explaining features in them, like attention [BCB14]. This allows you to
connect the input features to the prediction based on attention. There is also work withinmachine learning called symbolic
regression, which tries to construct self-explaining models by working with mathematical equations that can be directly
interpreted[AGFW21, BD00, UT20]. Symbolic regression is then used to generate the surrogate model[CSGB+20].
Post hoc interpretation by creating explanations can be approached in a number of ways, but the most common are
training data importance, feature importance, and counterfactual explanations[WSW22, RSG16a, RSG16b, WMR17].
An example of a post hoc interpretation based on data importance is identifying the most influential training data to
explain a prediction [KL17]. It is perhaps arguable if this gives an explanation, but it certainly helps understand which
data is relevant for a prediction. Feature importance is probably the most common XAI approach and frequently appears
in computer vision research where the pixels most important for the class of an image are highlighted.
Counterfactual explanations are an emerging post hoc interpretation method. Counterfactuals are new data point that
serve as an explanation. A counterfactual gives insight into how important and sensitive the features are. An example
might be in a model that recommends giving a loan. A model could produce the following counterfactual explanation
(from [WMR17]):

You were denied a loan based on your annual income, zip code, and assets. If your annual income had been
$45,000, you would have been offered a loan.
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The second sentence is the conuterfactual and shows how the features could be changed to affect the model outcome.
Coutnerfactuals provide a nice balance of complexity and explanatory power.
This was a brief overview of large field of XAI. You can find a recent review of interpretable deep learning in Samek et al.
[SML+21] and ChristopherMolnar has a broad online book about interpretable machine learning, including deep learning
[Mol19]. Prediction error and confidence in predictions is not covered here, since they are more about justification, but
see the methods from Regression & Model Assessment which apply.

12.2 Feature Importance

Feature importance is the most straightforward and common method of interpreting a machine learning model. The
output of feature importance is a ranking or numerical values for each feature, typically for a single prediction. If you are
trying to understand the feature importance across the whole model, this is called global feature importance and local for
a single prediction. Global feature importance and global interpretability is relatively rare because accurate deep learning
models change which features are important in different regions of feature space.
Let’s start with a linear model to see feature importance:

̂𝑦 = �⃗� ⃗𝑥 + 𝑏 (12.1)

where ⃗𝑥 is our feature vector. A simple way to assess feature importance is to simply look at the weight value 𝑤𝑖 for a
particular feature 𝑥𝑖. The weight 𝑤𝑖 shows how much ̂𝑦 would change if 𝑥𝑖 is increased by 1, while all other features are
constant. If the magnitude of our features are comparable, then this would be a reasonable way to rank features. However,
if our features have units, this approach is sensitive to unit choices and relative magnitude of features. For example if our
temperature was changed from Celsius to Fahrenheit, a 1 degree increase will have a smaller effect.
To remove the effect of feature magnitude and units, a slightly better way to assess feature importance is to divide 𝑤𝑖 by
the standard error in the feature values. Recall that standard error is just the ratio of sum of squared error in predicted
value divided by the total deviation in the feature. Standard error is a ratio of prediction accuracy to feature variance. 𝑤𝑖
divided by standard error is called the 𝑡-statistic because it can be compared with the 𝑡-distribution for assessing feature
importance.

𝑡𝑖 = 𝑤𝑖
𝑆𝑤𝑖

, 𝑆2
𝑤𝑖

= 1
𝑁 − 𝐷 ∑

𝑗

( ̂𝑦𝑗 − 𝑦𝑗)
2

(𝑥𝑖𝑗 − ̄𝑥𝑖)
2 (12.2)

where 𝑁 is the number of examples, 𝐷 is the number of features, and ̄𝑥𝑖 is the average value of the 𝑖th feature. The
𝑡𝑖 value can be used to rank features and it can be used for a hypothesis test: if 𝑃(𝑡 > 𝑡𝑖) < 0.05 then that feature
is significant, where 𝑃(𝑡) is Student’s 𝑡-distribution. Note that a feature’s significance is sensitive to which features are
present in a model; if you add new features some may become redundant.

If we move to a nonlinear learned function ̂𝑓( ⃗𝑥), we must compute how the prediction changes if a feature value increases
by 1 via the derivative approximation:

Δ ̂𝑓( ⃗𝑥)
Δ𝑥𝑖

≈ 𝜕 ̂𝑓( ⃗𝑥)
𝜕𝑥𝑖

so a change by 1 is

Δ ̂𝑓( ⃗𝑥) ≈ 𝜕 ̂𝑓( ⃗𝑥)
𝜕𝑥𝑖

. (12.3)

In practice, wemake a slight variation on this equation – instead of a Taylor series centered at 0 approximating this change,
we center at some other root (point where the function is 0). This “grounds” the series at the decision boundary (a root)
and then you can view the partials as “pushing” the predicted class away or towards the decision boundary. Another way
to think about this is that we use the first-order terms of the Taylor series to build a linear model. Then we just apply
what we did above to that linear model and use the coefficients as the “importance” of features. Specifically, we use this
surrogate function for ̂𝑓( ⃗𝑥):

𝑐𝑎𝑛𝑐𝑒𝑙 ̂𝑓( ⃗𝑥) ≈ 0𝑓( ⃗𝑥′) + ∇ ̂𝑓( ⃗𝑥′) ⋅ ( ⃗𝑥 − ⃗𝑥′) (12.4)
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where ⃗𝑥′ is the root of ̂𝑓( ⃗𝑥). In practice people may choose the trivial root ⃗𝑥′ = ⃗0, however a nearby root is ideal. This
root is often called the baseline input. Note that as opposed to the linear example above, we consider the product of the
partial 𝜕 ̂𝑓(�⃗�)

𝜕𝑥𝑖
and the increase above baseline (𝑥𝑖 − 𝑥′

𝑖).

12.2.1 Neural Network Feature Importance

In neural networks, the partial derivatives are a poor approximation of the real changes to the output. Small changes
to the input can have discontinuous changes (because of nonlinearities like ReLU), making the terms above have little
explanatory power. This is called the shattered gradients problem [BFL+17]. Breaking down each feature separately
also misses correlations between features – which don’t exist in a linear model. Thus the derivative approximation works
satisfactorily in locally linear models, but not deep neural networks.
There are a variety of techniques that get around the issue of shattered gradients in neural networks. Two popular meth-
ods are integrated gradients [STY17] and SmoothGrad[STK+17]. Integrated gradients creates a path from ⃗𝑥′ to ⃗𝑥 and
integrates Equation 4 along that path:

IG𝑖 = ( ⃗𝑥 − ⃗𝑥′) ∫
1

0
[∇ ̂𝑓 ( ⃗𝑥′ + 𝑡 ( ⃗𝑥 − ⃗𝑥′))]

𝑖
𝑑𝑡 (12.5)

where 𝑡 is some increment along the path such that ⃗𝑥′ +𝑡 ( ⃗𝑥 − ⃗𝑥′) = ⃗𝑥′ when 𝑡 = 0 and ⃗𝑥′ +𝑡 ( ⃗𝑥 − ⃗𝑥′) = ⃗𝑥when 𝑡 = 1.
This gives us the integrated gradient for each feature 𝑖. The integrated gradients are the importance of each feature, but
without the complexity of shattered gradients. There are some nice properties too, like ∑𝑖 IG𝑖 = 𝑓( ⃗𝑥) − 𝑓( ⃗𝑥′) so that
the integrated gradients provide a complete partition of the change from the baseline to the prediction[STY17].
Implementing integrated gradients is actually relatively simple. You approximate the path integral with a Riemann sum by
breaking the path into a set of discrete inputs between the input features ⃗𝑥 and the baseline ⃗𝑥′. You compute the gradient
of these inputs with the neural network. Then you multiply that by the change in features above baseline: ( ⃗𝑥 − ⃗𝑥′).
SmoothGrad is a similar idea to the integrated gradients. Rather than summing up the gradients along a path though, we
sum gradients from random points nearby our prediction. The equation is:

SG𝑖 =
𝑀

∑
𝑗

[∇ ̂𝑓 ( ⃗𝑥′ + ⃗𝜖)]
𝑖

(12.6)

where 𝑀 is a choice of sample number and ⃗𝜖 is sampled from 𝐷 zero-mean Guassians [STK+17]. The only change in
implementation here is to replace the path with a series of random perturbations.
Beyond these gradient based approaches, Layer-wise Relevance Propagation (LRP) is another popular approach for fea-
ture importance analysis in neural networks. LRP works by doing a backwards propogation through the neural network
that partitions the output value of one layer to the input features. It “distributes relevance.” What is unusual about LRP
is that each layer type needs its own implementation. It doesn’t rely on the analytic derivative, but instead a Taylor series
expansion of the layer equation. There are variants for GNNs and sequence models, so that LRP can be used in most
settings in materials and chemistry [MBL+19].

12.2.2 Shapley Values

A model agnostic way to treat feature importance is with Shapley values. Shapley values come from game theory and
are a solution to how to pay a coalition of cooperating players according to their contributions. Imagine each feature
is a player and we would like to “pay” them according to their contribution to the predicted value. A Shapley value
𝜙𝑖(𝑥) is the pay to feature 𝑖 at instance 𝑥. We break-up the predicted function value ̂𝑓(𝑥) into the Shapley values so
that the sum of the pay is the function value: ∑𝑖 𝜙𝑖(𝑥) = ̂𝑓(𝑥). This means you can interpret the Shapley value of a
feature as its numerical contribution to the prediction. Shapley values are powerful because their calculation is agnostic
to the model, they partition the predicted value among each feature, and they have other attributes that we would desire
in an explanation of a prediction (symmetry, linearity, permutation invariant, etc.). Their disadvantage are that exact
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computation is combinatorial with respect to feature number and they have no sparsity, making them less helpful as
feature number grows. Most methods we discuss here also have no sparsity. You can always force your model to be
sparse to achieve sparse explanations, like with L1 regularization (see Standard Layers).
Shapley values are computed as

𝜙𝑖(𝑥) = 1
𝑍 ∑

𝑆∈𝑁\𝑥𝑖

𝑣(𝑆 ∪ 𝑥𝑖) − 𝑣(𝑆) (12.7)

𝑍 = |𝑆|! (𝑁 − |𝑆| − 1)!
𝑁!

where 𝑆 ∈ 𝑁\𝑥𝑖 means all sets of features that exclude feature 𝑥𝑖, 𝑆 ∪ 𝑥𝑖 means putting back feature 𝑥𝑖 into the set,
and 𝑣(𝑆) is the value of ̂𝑓(𝑥) using only the features included in 𝑆, and 𝑍 is a normalization value. The formula can be
interpreted as the mean of all possible differences in ̂𝑓 formed by adding/removing feature 𝑖.
One immediate concern though is how can we “remove” feature 𝑖 from a model equation? We marginalize out feature
𝑖. Recall a marginal is a way to integrate out a random variable 𝑃(𝑥) = ∫ 𝑃(𝑥, 𝑦) 𝑑𝑦. That integrates over all possible
𝑥 values. Marginalization can be used on functions of random variables, which obviously are also random variables, by
taking an expectation: 𝐸𝑦[𝑓|𝑋 = 𝑥] = ∫ 𝑓(𝑋 = 𝑥, 𝑦)𝑃 (𝑋 = 𝑥, 𝑦) 𝑑𝑦. I’ve emphasized that the random variable 𝑋 is
fixed in the integral and thus 𝐸𝑦[𝑓] is a function of 𝑥. 𝑦 is removed by computing the expected value of 𝑓(𝑥, 𝑦) where
𝑥 is fixed (the function argument). We’re essentially replacing 𝑓(𝑥, 𝑦) with a new function 𝐸𝑦[𝑓] that is the average of
all possible 𝑦 values. I’m over-explaining this though, it’s quite intuitive once you see the code below. The other detail is
that value is the change relative to the average of ̂𝑓 . You can typically ignore this extra term - it cancels, but I include it
for completeness. Thus the value equation becomes [vStrumbeljK14]:

𝑣(𝑥𝑖) = ∫ 𝑓(𝑥0, 𝑥1, … , 𝑥𝑖, … , 𝑥𝑁)𝑃 (𝑥0, 𝑥1, … , 𝑥𝑖, … , 𝑥𝑁) 𝑑𝑥𝑖 − 𝐸 [ ̂𝑓( ⃗𝑥)] (12.8)

How do we compute the marginal ∫ 𝑓(𝑥0, 𝑥1, … , 𝑥𝑖, … , 𝑥𝑁)𝑃 (𝑥0, 𝑥1, … , 𝑥𝑖, … , 𝑥𝑁) 𝑑𝑥𝑖? We do not have a known
probability distribution 𝑃( ⃗𝑥). We can sample from 𝑃( ⃗𝑥) by considering our data as an empirical distribution. That is,
we can sample from 𝑃( ⃗𝑥) by sampling data points. There is a little bit of complexity here because we need to sample
the ⃗𝑥’s jointly, we cannot just mix together individual features randomly because there are correlations between features
that will be removed.
Strumbelj et al. [vStrumbeljK14] showed that we can directly estimate the 𝑖th Shapley value with:

𝜙𝑖( ⃗𝑥) = 1
𝑀

𝑀
∑ ̂𝑓 ( ⃗𝑧+𝑖) − ̂𝑓 ( ⃗𝑧−𝑖) (12.9)

where ⃗𝑧 is a “chimera” example constructed from the real example ⃗𝑥 and a randomly drawn example ⃗𝑥′. We randomly
select from ⃗𝑥 and ⃗𝑥′ to construct ⃗𝑧, except ⃗𝑧+𝑖 specifically has the 𝑖th feature from the example ⃗𝑥 and ⃗𝑧−𝑖 has the 𝑖th
feature from the random example ⃗𝑥′. 𝑀 is chosen large enough to get a good sample for this value. [vStrumbeljK14]
gives guidance on choosing 𝑀 , but basically as large 𝑀 as computationally feasible reasonable. One change in this
approximation though is that we end-up with an explicit term for the expectation (sometimes denoted 𝜙0) so that our
“completeness” equation is:

∑
𝑖

𝜙𝑖( ⃗𝑥) = ̂𝑓( ⃗𝑥) − 𝐸[ ̂𝑓( ⃗𝑥)] (12.10)

Or if you explicitly include expectation as 𝜙0, which is independent of ⃗𝑥

𝜙0 + ∑
𝑖=1

𝜙𝑖( ⃗𝑥) = ̂𝑓( ⃗𝑥) (12.11)

Marginalizing features is not the same as replacing features with their average.

With this efficient approximation method, the strong theory, and independence of model choice, Shapley values are an
excellent choice for describing feature importance for predictions.
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12.3 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages.

Tip: To install packages, execute this code in a new cell.

!pip install dmol-book

If you find install problems, you can get the latest working versions of packages used in this book here

import haiku as hk
import jax
import tensorflow as tf
import jax.numpy as jnp
import numpy as np
import matplotlib.pyplot as plt
import urllib
from functools import partial
from jax.example_libraries import optimizers as opt
import dmol

np.random.seed(0)
tf.random.set_seed(0)

ALPHABET = [
"-",
"A",
"R",
"N",
"D",
"C",
"Q",
"E",
"G",
"H",
"I",
"L",
"K",
"M",
"F",
"P",
"S",
"T",
"W",
"Y",
"V",

]

We now define a few functions we’ll need to convert between amino acid sequence and one-hot vectors.

def seq2array(seq, L=200):
return np.pad(list(map(ALPHABET.index, seq)), (0, L - len(seq))).reshape(1, -1)

(continues on next page)
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(continued from previous page)

def array2oh(a):
a = np.squeeze(a)
o = np.zeros((len(a), 21))
o[np.arange(len(a)), a] = 1
return o.astype(np.float32).reshape(1, -1, 21)

urllib.request.urlretrieve(
"https://github.com/whitead/dmol-book/raw/master/data/hemolytic.npz",
"hemolytic.npz",

)
with np.load("hemolytic.npz", "rb") as r:

pos_data, neg_data = r["positives"], r["negatives"]

12.4 Feature Importance Example

Let’s see an example of these feature importance methods on a peptide prediction task to predict if a peptide will kill
red blood cells (hemolytic). This is similar to the solubility prediction example from Standard Layers. The data is from
[BW21]. The model takes in peptides sequences (e.g., DDFRD) and predicts the probability that the peptide is hemolytic.
The goal of the feature importance method here will be to identify which amino acids matter most for the hemolytic
activity. The hidden-cell below loads and processes the data into a dataset.
We rebuild the convolution model in Jax (using Haiku) to make working with gradients a bit easier. We also make a few
changes to the model – we pass in the sequence length and amino acid fractions as extra information in addition to the
convolutions.

def binary_cross_entropy(logits, y):
"""Binary cross entropy without sigmoid. Works with logits directly"""
return (

jnp.clip(logits, 0, None) - logits * y + jnp.log(1 + jnp.exp(-jnp.
↪abs(logits)))

)

def model_fn(x):
# get fractions, excluding skip character
aa_fracs = jnp.mean(x, axis=1)[:, 1:]
# compute convolutions/poolings
mask = jnp.sum(x[..., 1:], axis=-1, keepdims=True)
for kernel, pool in zip([5, 3, 3], [4, 2, 2]):

x = hk.Conv1D(16, kernel)(x) * mask
x = jax.nn.tanh(x)
x = hk.MaxPool(pool, pool, "VALID")(x)
mask = hk.MaxPool(pool, pool, "VALID")(mask)

# combine fractions, length, and convolution ouputs
x = jnp.concatenate((hk.Flatten()(x), aa_fracs, jnp.sum(mask, axis=1)), axis=1)
# dense layers. no bias, so zeros give P=0.5
logits = hk.Sequential(

[
hk.Linear(256, with_bias=False),
jax.nn.tanh,
hk.Linear(64, with_bias=False),

(continues on next page)
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(continued from previous page)

jax.nn.tanh,
hk.Linear(1, with_bias=False),

]
)(x)
return logits

model = hk.without_apply_rng(hk.transform(model_fn))

def loss_fn(params, x, y):
logits = model.apply(params, x)
return jnp.mean(binary_cross_entropy(logits, y))

@jax.jit
def hemolytic_prob(params, x):

logits = model.apply(params, x)
return jax.nn.sigmoid(jnp.squeeze(logits))

@jax.jit
def accuracy_fn(params, x, y):

logits = model.apply(params, x)
return jnp.mean((logits >= 0) * y + (logits < 0) * (1 - y))

rng = jax.random.PRNGKey(0)
xi, yi = features[:batch_size], labels[:batch_size]
params = model.init(rng, xi)

opt_init, opt_update, get_params = opt.adam(1e-2)
opt_state = opt_init(params)

@jax.jit
def update(step, opt_state, x, y):

value, grads = jax.value_and_grad(loss_fn)(get_params(opt_state), x, y)
opt_state = opt_update(step, grads, opt_state)
return value, opt_state

WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0␣
↪and rerun for more info.)

epochs = 32
for e in range(epochs):

avg_v = 0
for i, (xi, yi) in enumerate(train_data):

v, opt_state = update(i, opt_state, xi.numpy(), yi.numpy())
avg_v += v

opt_params = get_params(opt_state)

def predict(x):
return jnp.squeeze(model.apply(opt_params, x))

(continues on next page)
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(continued from previous page)

def predict_prob(x):
return hemolytic_prob(opt_params, x)

If you’re having trouble following the code, that’s OK! The goal of this chapter is to show how to get explanations of a
model, not necessarily how to build the model. So focus on the next few lines where I show how to use the model to get
predictions and explain them. The model is called via predict(x) for logits or predict_prob for probability.

Sequence Models

Review Deep Learning on Sequences to refresh ideas about one-hots and sequence models.

Let’s try an amino acid sequence, a peptide, to get a feel for the model. The model outputs logits (logarithm of odds),
which we put through a sigmoid to get probabilities. The peptides must be converted from a sequence to a matrix of
one-hot column vectors. We’ll try two known sequences: Q is known to be common in hemolytic residues and the second
sequence is poly-G, which is the simplest amino acid.

s = "QQQQQ"
sm = array2oh(seq2array(s))
p = predict_prob(sm)
print(f"Probability {s} of being hemolytic {p:.2f}")

s = "GGGGG"
sm = array2oh(seq2array(s))
p = predict_prob(sm)
print(f"Probability {s} of being hemolytic {p:.2f}")

Probability QQQQQ of being hemolytic 1.00
Probability GGGGG of being hemolytic 0.00

It looks reasonable – the model matches our intuition about these two sequences
Now we compute the accuracy of our model, which is quite good.

acc = []
for xi, yi in test_data:

acc.append(accuracy_fn(opt_params, xi.numpy(), yi.numpy()))
print(jnp.mean(np.array(acc)))

0.95208335
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12.4.1 Gradients

Now to start examining why a particular sequence is hemolytic! We’ll begin by computing the gradients with respect to
input – the naieve approach that is susceptible to shattered gradients. Computing this is a component in the process for
integrated and smooth gradients, so not wasted effort. We will use a more complex peptide sequence that is known to be
hemolytic to get more interesting analysis.

s = "RAGLQFPVGRLLRRLLRRLLR"
sm = array2oh(seq2array(s))
p = predict_prob(sm)
print(f"Probability {s} of being hemolytic {p:.2f}")

Probability RAGLQFPVGRLLRRLLRRLLR of being hemolytic 1.00

The code is quite simple, just a gradient computation.

gradient = jax.grad(predict, 0)
g = gradient(sm)
plot_grad(g, s)

Remember that the model outputs logits. Positive value of the gradient mean this amino acid is responsible for pushing
hemolytic probability higher and negative values mean the amino acid is pushing towards non-hemolytic. Interestingly,
you can see a strong position dependence on the leucine (L) and arginine (R).
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12.4.2 Integrated Gradients

We’ll now implement the integrated gradients method. We go through three basic steps:
1. Create an array of inputs going from baseline to input peptide
2. Evaluate gradient on each input
3. Compute the sum of the gradients and multiply it by difference between baseline and peptide

The baseline for us is all zeros – which gives a probability of 0.5 (logits = 0, a model root). This baseline is exactly on the
decision boundary. You could use other baselines like all glycines or all alanines, just they should be at or near probability
of 0.5. You can find a detailed and interactive exploration of the baseline choice in [SLL20].

def integrated_gradients(sm, N):
baseline = jnp.zeros((1, L, 21))
t = jnp.linspace(0, 1, N).reshape(-1, 1, 1)
path = baseline * (1 - t) + sm * t

def get_grad(pi):
# compute gradient
# add/remove batch axes
return gradient(pi[jnp.newaxis, ...])[0]

gs = jax.vmap(get_grad)(path)
# sum pieces (Riemann sum), multiply by (x - x')
ig = jnp.mean(gs, axis=0, keepdims=True) * (sm - baseline)
return ig

ig = integrated_gradients(sm, 1024)

plot_grad(ig, s)

We see that the position dependence has become more pronounced, with arginine being very sensitive to position. Rela-
tively little has qualitatively changed between this and the vanilla gradients.
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12.4.3 SmoothGrad

To do SmoothGrad, our steps are almost identicial:
1. Create an array of inputs that are random pertubations of the input peptide
2. Evaluate gradient on each input
3. Compute the mean of the gradients

There is one additional hyperparameter, 𝜎, which in principle should be as small as possible while still causing the model
output to change.

def smooth_gradients(sm, N, rng, sigma=1e-3):
baseline = jnp.zeros((1, L, 21))
t = jax.random.normal(rng, shape=(N, sm.shape[1], sm.shape[2])) * sigma
path = sm + t
# remove examples that are negative and force summing to 1
path = jnp.clip(path, 0, 1)
path /= jnp.sum(path, axis=2, keepdims=True)

def get_grad(pi):
# compute gradient
# add/remove batch axes
return gradient(pi[jnp.newaxis, ...])[0]

gs = jax.vmap(get_grad)(path)
# mean
ig = jnp.mean(gs, axis=0, keepdims=True)
return ig

sg = smooth_gradients(sm, 1024, jax.random.PRNGKey(0))
plot_grad(sg, s)

It looks remarkably similar to the vanilla gradient setting – probably because our 1D input/shallow network is not as
sensitive to shattered gradients.
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12.4.4 Shapley Value

Now we will approximate the Shapley values for each feature using Equation 10.9. The Shapley value computation is
different than previous approaches because it does not require gradients. The basic algorithm is:

1. select random point x’
2. create point z by combining x and x’
3. compute change in predicted function

One efficiency change we make is to prevent modifying the sequence in its padding – basically prevent exploring making
the sequence longer.

def shapley(i, sm, sampled_x, rng, model):
M, F, *_ = sampled_x.shape
z_choice = jax.random.bernoulli(rng, shape=(M, F))
# only swap out features within length of sm
mask = jnp.sum(sm[..., 1:], -1)
z_choice *= mask
z_choice = 1 - z_choice
# construct with and w/o ith feature
z_choice = z_choice.at[:, i].set(0.0)
z_choice_i = z_choice.at[:, i].set(1.0)
# select them via multiplication
z = sm * z_choice[..., jnp.newaxis] + sampled_x * (1 - z_choice[..., jnp.newaxis])
z_i = sm * z_choice_i[..., jnp.newaxis] + sampled_x * (

1 - z_choice_i[..., jnp.newaxis]
)
v = model(z_i) - model(z)
return jnp.squeeze(jnp.mean(v, axis=0))

# assume data is alrady shuffled, so just take M
M = 4096
sl = len(s)
sampled_x = train_data.unbatch().batch(M).as_numpy_iterator().next()[0]
# make batched shapley so we can compute for all features
bshapley = jax.vmap(shapley, in_axes=(0, None, None, 0, None))
sv = bshapley(

jnp.arange(sl),
sm,
sampled_x,
jax.random.split(jax.random.PRNGKey(0), sl),
predict,

)

# compute global expectation
eyhat = 0
for xi, yi in full_data.batch(M).as_numpy_iterator():

eyhat += jnp.mean(predict(xi))
eyhat /= len(full_data)

One nice check on Shapley values is that we can check that their sum is equal to the value of model function minus the
expect value across all instances. Note we made approximations to use the Equation from [vStrumbeljK14] so that we
cannot expect perfect agreement. That value is computed as:

print(np.sum(sv), predict(sm))
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6.7905803 8.086109

which is some disagreement. This is an effect of the approximation method we’re using. We can check that by examining
how sample number effects the sum of Shapley values.

Fig. 12.1: A comparison of sum of Shapley values and function value as a function of samples number in the Shapley
value approximation.

It is slowly converging. Finally we can view the individual Shapley values, which is our explanation.

plot_grad(sv, s)
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The four methods are shown side-by-side below.

heights = []
plt.figure(figsize=(12, 4))
x = np.arange(len(s))
for i, (gi, l) in enumerate(zip([g, ig, sg], ["Gradient", "Integrated", "Smooth"])):

h = gi[0, np.arange(len(s)), list(map(ALPHABET.index, s))]
plt.bar(x + i / 5 - 1 / 4, h, width=1 / 5, edgecolor="black", label=l)

plt.bar(x + 3 / 5 - 1 / 4, sv, width=1 / 5, edgecolor="black", label="Shapley")
ax = plt.gca()
ax.set_xticks(range(len(s)))
ax.set_xticklabels(s)
ax.set_xlabel("Amino Acid $x_i$")
ax.set_ylabel(r"Importance [logits]")
plt.legend()
plt.show()

As someone who works with peptides, I believe the Shapley is the most accurate here. I wouldn’t expect the pattern of L
and R to be that significant, which is what the Shapley values show. Another difference is that the Shapley values do not
show the phenylalanine (F) as have a significant effect.
What can we conclude from this information? We could perhaps add an explanation like this: “The sequence is predicted
to be hemolytic primarily because of the glutamine, proline, and arrangement of lecucine and arginine.”

12.5 What is feature importance for?

Feature importance rarely leads to a clear explanation that gives the cause for a prediction or insight that is actionable. The
lack of causality can lead us to find meaning in feature explanations that do not exist[CK18]. Another caveat is remember
that we are explaining model, not the actual chemical systems. For example, avoid saying “Hemolytic activity was caused
by the glutamine in position 5.” Instead: “Our model predicted hemolytic activity because of glutamine in position 5.”
An actionable explanation is one that shows how to modify the features to affect the outcome — similar to saying we
know the cause for an outcome. Thus, there is ongoing debate about if feature importance is an explanation [Lip18]. A
popular line of work that tries to connect feature importance to human concepts is called Quantitative testing with concept
activation vectors (TCAV) [KWG+18]. I personally have moved away from feature importance for XAI because the
explanations are not actionable or causal and often can add additional confusion.
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12.6 Training Data Importance

Another kind of explanation or interpretation wemight desire iswhich training data points contribute most to a prediction.
This is a more literal answer to the question: “Why did my model predict this?” – neural networks are a result of training
data and thus the answer to why a prediction is made can be traced to training data. Ranking training data for a given
prediction helps us understand which training examples are causing the neural network to predict a value. This is like an
influence function, ℐ(𝑥𝑖, 𝑥), which gives a score of incluence for training point 𝑖 and input 𝑥. The most straightforward
way to compute the influence would be to train the neural network with (i.e., ̂𝑓(𝑥)) and without 𝑥𝑖 (i.e., ̂𝑓−𝑥𝑖

(𝑥)) and
define the influence as

ℐ(𝑥𝑖, 𝑥) = ̂𝑓−𝑥𝑖
(𝑥) − ̂𝑓(𝑥) (12.12)

For example, if a prediction is higher after removing the training point 𝑥𝑖 from training, we would say that point has
a positive influence. Computing this influence function requires training the model as many times as you have points –
typically computationally infeasible. [KL17] show a way to approximate this by looking at infinitesimal changes to the
weights of each training point. Computing these influence functions do require computing a Hessian with respect to the
loss function and thus are not commonly used. If you’re using JAX though, this is simple to do.

If using a kernel model, the features are the training data. The above methods like integrated gradients, give training
data importance.

Training data importance provides an interpretation that is useful for deep learning experts. It tells you which training
examples are most influential for a given predictions. This can help troubleshoot issues with data or tracing explanations
for spurious predictions. However, a typical user of predictions from a deep learning model will probably be unsatisfied
with a ranking of training data as an explanation.

12.7 Surrogate Models

One of the more general ideas in interpretability is to fit an interpretable model to a black box model in the neighborhood
of a specific example. We assume that an interpretable model cannot be fit globally to a black box model – otherwise
we could just use the interpretable model and throw away the black box model. However, if we fit the interpretable
model to just a small region around an example of interest, we can provide an explanation through the locally correct
interpretable model. We call the interpretable model a local surrogate model. Examples of local surrogate models that
are inherently interpretable include decision trees, linear models, sparse linear models (for succinct explanations), a Naive
Bayes Classifier, etc.
A popular algorithm for this process of fitting a local surrogate model is called Local Interpretable Model-Agnostic
Explanations (LIME) [RSG16a]. LIME fits the local surrogate model in the neighborhood of the example of interest
utilizing the loss function that trained the original black box model. The loss function for the local surrogate model is
weighted so that we value points closer to the example of interest as we regress the surrogate model. The LIME paper
includes sparsifying the surrogate model in its notation, but we’ll omit that from the loss equation since that is more of an
attribute of the local surrogate model. Thus, our definition for the local surrogate model loss is

𝑙𝑠 (𝑥′) = 𝑤(𝑥′, 𝑥)𝑙 ( ̂𝑓𝑠(𝑥′), ̂𝑓(𝑥′)) (12.13)

where 𝑤(𝑥′, 𝑥) is a weight kernel function that weights points near example of interest 𝑥, 𝑙(⋅, ⋅) is the original black box
model loss, ̂𝑓(⋅) is the black box model, and ̂𝑓𝑠(⋅) is the local surrogate model.
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LIME as formulated in [RSG16a] gives feature importance descriptions, but some surrogate models may be inter-
pretable already. Like a decision tree.

The weight function is a bit ad hoc – it depends on the data type. For regression tasks with scalar labels, we use a kernel
function and you have a variety of choices: Gaussian, cosine, Epanechnikov. For text, the LIME implementations use
a Hamming distance which just counts number of text tokens which do not match between two strings. Images use the
same distance but with superpixels being the same as the example or blank.
How are the points 𝑥′ generated? In the continuous case 𝑥′ is sampled uniformly, which is quite a feat since feature
spaces are often unbounded. You could sample 𝑥′ according to your weight function and then omit the weighting (since
it was sampled according to that) to avoid issues like unbounded feature spaces. In general, LIME is a bit subjective in
continuous vector feature spaces. For images and text, 𝑥′ is formed by masking tokens (words) and zeroing (making
black) superpixels. This leads to explanations that should feel quite similar to Shapley values – and indeed you can show
LIME is equivalent to Shapley values with some small notation changes.

12.8 Counterfactuals

Counterfactuals

Our optimization formulation is what’s used in XAI, but counterfactuals in other contexts do not have the “nearness”
criterion

A counterfactual is a solution to an optimization problem: find an example 𝑥′ that has a different label than 𝑥 and as close
as possible to 𝑥[WMR17]. You can formulate this like:

minimize 𝑑(𝑥, 𝑥′)
such that ̂𝑓(𝑥) ≠ ̂𝑓(𝑥′)

(12.14)

In regression settings where ̂𝑓(𝑥) outputs a scalar, you need to modify your constraint to be some Δ away from ̂𝑓(𝑥).
𝑥′ that satisfies this optimization problem is the counterfactual: a condition that did not occur and would have led to
a different outcome. Typically finding 𝑥′ is treated as a derivative-free optimization. You can calculate 𝜕 ̂𝑓

𝜕𝑥′ and do
constrained optimization, but in practice it can be faster to just randomly perturb 𝑥 until ̂𝑓(𝑥) ≠ ̂𝑓(𝑥′) like a Monte Carlo
optimization. You can also use a generative model that can propose new 𝑥′ via unsupervised training. See [WSW22] for
a universal counterfactual generator for molecules. See [NB20] for a method specifically for graph neural networks of
molecules.
Defining distance is an important subjective concern, that we saw above for LIME. A common example for molecu-
lar structures is Tanimoto similarity (also known as Jaccard index) of molecular fingerprints/descriptors like Morgan
fingerprints [RH10].
Counterfactuals have one disadvantage compared to Shapley values: they do not provide a complete explanation. Shapley
values sum to the prediction, meaning we are not missing any part of the explanation. Counterfactuals modify as few
features as possible (minimizing distance) and so may omit information about features that still contribute to a prediction.
Of course, one advantage of Shapley values is that they are actionable. You can use the counterfactual directly.
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12.8.1 Example

We can quickly implement this idea for our peptide example above. We can define our distance as the Hamming distance.
Then the closes 𝑥′ would be a single amino acid substitution. Let’s just try enumerating those and see if we can achieve
a label swap. We’ll define a function that does a single substitution:

def check_cf(x, i, j):
# copy
x = jnp.array(x)
# substitute
x = x.at[:, i].set(0)
x = x.at[:, i, j].set(1)
return predict(x)

check_cf(sm, 0, 0)

DeviceArray(8.560182, dtype=float32)

Then build all possible substitutions with jnp.meshgrid and apply our function over that with vmap. .ravel()
makes our array of indices be a single dimensions, so we do not need to worry about doing a complex vmap.

ii, jj = jnp.meshgrid(jnp.arange(sl), jnp.arange(21))
ii, jj = ii.ravel(), jj.ravel()
x = jax.vmap(check_cf, in_axes=(None, 0, 0))(sm, ii, jj)

Now we’ll display all the single amino acid substitutions which resulted in a negative prediction - the logits are less than
zero.

from IPython.core.display import display, HTML

out = ["<tt>"]
for i, j in zip(ii[jnp.squeeze(x) < 0], jj[jnp.squeeze(x) < 0]):

out.append(f'{s[:i]}<span style="color:red;">{ALPHABET[j]}</span>{s[i+1:]}<br/>')
out.append("</tt>")
display(HTML("".join(out)))

<IPython.core.display.HTML object>

We have a few to choose from, but the interpretation is essentially exchange the glutamine with a hydrophobic group or
replace the proline with V, F, A, or C to make the peptide non-hemolytic. Stated as a counterfactual: “If the glutamine
were exchanged with a hydrophobic amino acid, the peptide would not be hemolytic”.

12.9 Specific Architectures Explanations

The same principles above apply to GNNs, but there are competing ideas about how best to translate these ideas to work
on graphs. See [AZL21] for a discussion of theory of interpretability specifically for GNNs and [YYGJ20] for a survey
of the methods available for constructing explanations in GNNs.
NLP is another area where there are specific approaches to constructing explanations and interpretation. See [MRC21]
for a recent survey.
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12.10 Model Agnostic Molecular Counterfacutal Explanations

The main challenge associated with counterfactuals in chemistry is the difficulty in computing the derivative in (12.14).
Therefore, most methods which focus on this task are specific to model architectures as we saw previously. Wellawatte
et. al [WSW22] have introduced a method named Molecular Model Agnostic Counterfactual Explanations (MMACE)
to do this for molecules regardless of model architecture.
The MMACE method is implemented in the exmol package. Given a molecule and a model, exmol is able to generate
local counterfactual explanations. There are twomain steps involved in theMMACEmethod. First, a local chemical space
is expanded around the given base molecule. Next, each sample point is labeled with the user given model architecture.
These labels are then used to identify the counterfactuals in the local chemical space. As the MMACE method is model
agnostic, exmol package is able to generate counterfactuals for both classification and regression tasks.
Now let’s see how to generate molecular counterfactuals using exmol. In this example, we will train a random forest
model which predicts clinical toxicology of molecules. For this binary classification task, we’ll be using the same dataset
we used in the Classification chapter presented by the MoleculeNet group [WRF+18].

12.11 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages, either on
your own environment or on Google Colab

Tip: To install packages, execute this code in a new cell

!pip install exmol jupyter-book matplotlib numpy pandas seaborn sklearn mordred[full]␣
↪rdkit-pypi

# make object that can compute descriptors
calc = mordred.Calculator(mordred.descriptors, ignore_3D=True)
# make subsample from pandas df
molecules = [rdkit.Chem.MolFromSmiles(smi) for smi in toxdata.smiles]

# view one molecule to make sure things look good.
molecules[0]

After importing the data we generate input descriptors with Mordred package.
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# Get valid molecules from the sample
valid_mol_idx = [bool(m) for m in molecules]
valid_mols = [m for m in molecules if m]
# Compute molecular descriptors using Mordred
features = calc.pandas(valid_mols, quiet=True)
labels = toxdata[valid_mol_idx].FDA_APPROVED
# Standardize the features
features -= features.mean()
features /= features.std()

# we have some nans in features, likely because std was 0
features = features.values.astype(float)
features_select = np.all(np.isfinite(features), axis=0)
features = features[:, features_select]
print(f"We have {len(features)} features per molecule")

We have 1478 features per molecule

In this example, we are using a simple dense neural network classifier implemented with Keras. First, let’s train this
simple classifier and use it to generate labels for the counterfactuals in exmol. By improving the performance of the
trained model, you can expect more accurate results. But the following is example is sufficient to understand the workings
of exmol for now.

# Train and test spit
X_train, X_test, y_train, y_test = train_test_split(

features, labels, test_size=0.2, shuffle=True
)
ft_shape = X_train.shape[-1]

# reshape data
X_train = X_train.reshape(-1, ft_shape)
X_test = X_test.reshape(-1, ft_shape)

Now let’s build our model and compile! You can find an in depth introduction to dense models in the Deep Learning
Overview chapter.

model = tf.keras.models.Sequential()
model.add(tf.keras.Input(shape=(ft_shape,)))
model.add(tf.keras.layers.Dense(32, activation="relu"))
model.add(tf.keras.layers.Dense(32))
model.add(Dense(1, activation="sigmoid"))
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])

# Model training
model.fit(X_train, y_train, epochs=50, batch_size=32, verbose=0)
_, accuracy = model.evaluate(X_test, y_test)
print(f"Model accuracy: {accuracy*100:.2f}%")

1/10 [==>...........................] - ETA: 0s - loss: 0.1121 - accuracy: 0.9688

10/10 [==============================] - 0s 740us/step - loss: 0.2182 - accuracy:␣
↪0.9324
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Model accuracy: 93.24%

Seems like our model has a good accuracy!
Now we’ll write a wrapper function that takes in SMILES and/or SELFIES molecule representations and output label
predictions from the trained classifier. A detailed description on SELFIES can be found in Deep Learning on Sequences
chapter. This wrapper function is given as an input to exmol.sample_space function in exmol to create a local
chemical space around a given base molecule. exmol uses Superfast Traversal, Optimization, Novelty, Exploration and
Discovery (STONED) algorithm [NPK+21] as a generative algorithm to expand the local space. Given a base molecule,
the STONED algorithm randomly mutate SELFIES representations of the molecules. These mutations can be string
substitutions, additions or deletions.

def model_eval(smiles, selfies):
molecules = [rdkit.Chem.MolFromSmiles(smi) for smi in smiles]
features = calc.pandas(molecules)
features = features.values.astype(float)
features = features[:, features_select]
labels = np.round(model.predict(np.nan_to_num(features).reshape(-1, ft_shape)))
return labels

Now we use STONED to sample local chemical space with exmol.sample_space. In this example, we will modify
the size of the sample space with num_samples argument. The base molecule selected here is a non-FDA approved
molecule.

space = exmol.sample_space("C1CC(=O)NC(=O)C1N2CC3=C(C2=O)C=CC=C3N", model_eval);

Once the sample space is created, we can identify counterfactuals in the local chemical space using exmol.
sample_space function. Each counterfactual is a python dataclass that contain additional information.

exps = exmol.cf_explain(space, 2)
exps[1]

Example(smiles='Nc1cccc2c1CN(CCC(=O)NCI)C2=O', selfies=
↪'[N][C][=C][C][=C][C][=C][Ring1][Branch1_2][C][N][Branch1_1][Branch2_
↪3][C][C][C][Branch1_2][C][=O][N][C][I][C][Ring1][N][=O]', similarity=0.
↪37333333333333335, yhat=array(0., dtype=float32), index=771, position=array([1.
↪83485072, 5.25947839]), is_origin=False, cluster=8, label='Counterfactual 1')

You can easily visualize the generated counterfactuals using the plotting codes in exmol: exmol.sample_space
and exmol.sample_space Similarity between the base and counterfactuals is the Tanimoto similarity of ECFP4
fingerprints. Top 3 counterfactuals are the shown here.

exmol.plot_cf(exps, nrows=1)
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The base molecule which we selected here is NOT FDA approved. By looking at the generated counterfactuals we can
conclude that, the heterocyclic group has an impact on the toxicity of the base. Therefore, by altering the heterocylic group,
the base molecule might be made non-toxic according to our model. This also shows why counterfactual explanations
give actionable insight into how modifications can be made.
We can also visualize the generated chemical space!

exmol.plot_space(space, exps)
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12.12 Summary

• Interpretation of deep learning models is imperative for ensuring model correctness, making predictions useful to
humans, and can be required for legal compliance.

• Interpretability of neural networks is part of a broader topic of explainability in AI (XAI), a topic that is in its
infancy

• An explanation is still ill-defined, but most often is expressed in terms of model features.
• Strategies for explanations include feature importance, training data importance, counterfactuals, and surrogate
models that are locally accurate,

• Most explanations are generated per-example (at inference).
• The most systematic but expensive to compute explanations are Shapley values.
• Some argue that counterfactuals provide themost intuitive and satisfying explanations, but theymay not be complete
explanations.

• exmol is a software that generate model agnostic molecular counterfactual explanations.
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CHAPTER

THIRTEEN

ATTENTION LAYERS

Attention is a concept in machine learning and AI that goes back many years, especially in computer vision[BP97]. Like
the word “neural network”, attention was inspired by the idea of attention in how human brains deal with the massive
amount of visual and audio input[TG80]. Attention layers are deep learning layers that evoke the idea of attention. You
can read more about attention in deep learning in Luong et al. [LPM15] and get a practical overview here. Attention
layers have been empirically shown to be so effective in modeling sequences, like language, that they have become in-
dispensible[VSP+17]. The most common place you’ll see attention layers is in transformer neural networks that model
sequences. We’ll also sometimes see attention in graph neural networks.

Attention can be confusing because of the three inputs. We’ll see later though that these inputs are actually often
identical. The query is one key and the keys and values are equal. Then if you batch the queries together (one for each
key), then you’ll see the query, keys, and values are equal. This is self-attention.

Audience & Objectives
This chapter builds on Standard Layers and Tensors and Shapes. You should be comfortable with broadcasting, matrices,
and tensor shapes. After completing this chapter, you should be able to

• Correctly specify shapes and input/output of attention layers
• Implement attention layers
• Understand how attention can be put into other layer types

Attention layers are fundamentally a weighted mean reduction. It is just computing a mean, where you somehow weight
each element contributing to the mean. Since it is a mean, attention decreases the rank of an input tensor. Attention is
unusual among layers because it takes three inputs, whereas most layers in deep learning take just one or perhaps two.
These inputs are called the query, the values, and the keys. The reduction occurs over the values; so if the values are
rank 3, the output will be rank 2. The query should be one less rank than the keys. The keys should be the same rank as
the values. The keys and query determine how to weight the values according the attention mechanism – a fancy word
for equation.
The table below summarizes these three input arguments. Note that often the query is batched, so that its rank will be 2
if batched. If the input query is batched, then the output’s rank will be batched as well and be 2 instead of 1.
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Rank Axes Purpose Example

Query 1 (# of attn features) input for checking against
keys

One word represented as feature vector

Keys 2 (sequence length, # of
attn features)

used to compute attention
against query

All words in a sentence represented as ma-
trix of feature vectors

Val-
ues

2 (sequence length, # of
value features)

used to compute value of
output

A vector of numbers for each word in a sen-
tence

Out-
put

1 (# of value features) attention-weighted mean
over values

single vector

13.1 Example

Attention is best conceptualized as operating on a sequence. Let’s use a sentence like “The sleepy child reads a book”.
The words in the sentence correspond to the keys. If we represent our words as embeddings, our keys will be rank 2. For
example, the word “sleepy” might be represented by an embedding vector of length 2: [2, 0, 1], where these embedding
values are trained or taken from a standard language embedding. By convention, the zeroth axis of keys will be the
position in the sequence and the first axis contains these vectors. The query is often an element from the keys, like the
word “book.” The point of attention is to see what parts of the sentence the query should be influenced by. “Book” should
have strong attention on “child” and “reads,” but probably not to “sleepy.” You’ll see soon that we will actually compute
this as a vector, called the attention vector ⃗𝑏. The output from the attention layer will be a reduction over the values where
each element of values is weighted by the attention between the query and the key. Thus there should be one key and one
value for each element in our sentence. The values could be identical to the keys, which is common.
Let’s see how this looks mathematically. The attention layer consists of two steps: (1) computing the attention vector ⃗𝑏
using the attention mechanism and (2) the reduction over the values using the attention vector ⃗𝑏. Attention mechanism
is a fancy word for the attention equation. Consider our example above. We’ll use a 3-dimensional embedding for our
words

Keys and queries as one-hot encodings will not work as inputs to attention layers because the dot product will give
zeros, unless the key and query are equal.

Index Embedding Word
0 0,0,0 The
1 2,0,1 Sleepy
2 1,-1,-2 Child
3 2,3,1 Reads
4 -2,0,0 A
5 0,2,1 Book

The keys will be a rank 2 tensor (matrix) putting all these together. Note that these are only integers to make this example
clearer, typically words are represented with floating point numbers when embedded.

K = ⎡⎢
⎣

0 2 1 2 −2 0
0 0 −1 3 0 2
0 1 −2 1 0 1

⎤⎥
⎦

(13.1)

They keys are shape (6, 3) because our sentence has 6 words and each word is represented with a 3 dimensional embedding
vector. Let’s make our values simple, we’ll have one for each word. These values are what determine our output. Perhaps
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they could be the sentiment of the word: is it a positive word (“happy”) or a negative word (“angry”).

V = [0, −0.2, 0.3, 0.4, 0, 0.1] (13.2)

Note that the values V should be the same rank as the keys, so its shape is interpreted as (6, 1). Finally, the query which
should be one rank less than the keys. Our query is the word “book:”

⃗𝑞 = [0, 2, 1] (13.3)

13.2 Attention Mechanism Equation

The attention mechanism equation uses query and keys arguments only. It outputs a tensor one rank less than the keys,
giving a scalar for each key corresponding to the attention the query should have for the key. This attention vector should
be normalized. The most common attention mechanism a dot product and softmax:

⃗𝑏 = softmax ( ⃗𝑞 ⋅ K) = softmax(∑
𝑗

𝑞𝑗𝑘𝑖𝑗) (13.4)

where index 𝑖 is the position in the sequence and 𝑗 is the index of the feature. Softmax is defined as

softmax ( ⃗𝑥) = 𝑒�⃗�

∑𝑖 𝑒𝑥
𝑖

(13.5)

and ensures that ⃗𝑏 is normalized. Substituting our values from the example above:

⃗𝑏 = softmax⎛⎜
⎝

[0, 2, 1] × ⎡⎢
⎣

0 2 1 2 −2 0
0 0 −1 3 0 2
0 1 −2 1 0 1

⎤⎥
⎦

⎞⎟
⎠

= softmax ([0, 1, −4, 7, 0, 5]) (13.6)

⃗𝑏 = [0, 0, 0, 0.88, 0, 0.12] (13.7)
I’ve rounded the numbers here, but essentially the attention vector only gives weight to the word itself (book) and the verb
“read”. I made this up, remember, but it gives you an idea of how attention gives you a way to connect words. It may
even remind you of our graph neural network’s idea of neighbors.

13.3 Attention Reduction

After computing the attention vector ⃗𝑏, this is used to compute a weighted mean over the values:

V ⃗𝑏 = [0, 0, 0, 0.88, 0, 0.12]𝑇 [0, −0.2, 0.3, 0.4, 0, 0.1] = 0.36 (13.8)

Conceptually, our example computed the attention-weighted sentiment of the query word “book” in our sentence. You
can see that attention layers do two things: compute an attention vector with the attention mechanism and then use it to
take the attention-weighted average over the values.

13.4 Tensor-Dot

This dot product, softmax, and reduction is called a tensor-dot and is the most common attention layer[LPM15]. One
common modification is to divide by the dimension of the keys (last axis dimension). Remember the keys are not nor-
malized. If they are random numbers, the magnitude of the output from the dot product scales with the square root of the
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dimension of the keys due to the central limit theorem. This can make the soft-max behave poorly, since you’re taking
𝑒 ⃗𝑞⋅K. Putting this all together, the equation is:

�⃗� = softmax( 1√
𝑑

⃗𝑞 ⋅ K) (13.9)

where 𝑑 is the dimension of the query vector.

13.5 Soft, Hard, and Temperature Attention

One possible change to attention is to replace the softmax with a one at the position of highest attention and zero at all
others. This is called hard attention. The equation for hard attention is to replace softmax with a “hardmax”, defined as

hardmax ( ⃗𝑥) = lim
𝑇 →0

𝑒�⃗�/𝑇

∑𝑖 𝑒𝑥𝑖/𝑇 (13.10)

which is a mathematical way to formulate putting 1 in the position of the largest element of ⃗𝑥 and a 0 at all others.
The choice of 𝑇 is for the word temperature, because this equation is similar to Boltzmann’s distribution from statistical
mechanics. You can see that limit 𝑇 = 0 is the hard attention, 𝑇 = 1 is the soft attention, and 𝑇 = ∞ means uniform
attention. you could tune 𝑇 to some intermediate values as well.

13.6 Self-Attention

Remember how everything is batched in deep learning? The batched input to an attention layer is usually the query. So
although in the above discussion it was a tensor of one rank less than the keys (typically a query vector), once it has been
batched it will be the same rank as the keys. Almost always, the query is in fact equal to the keys. Like in our example, our
query was the embedding vector for the word “book”, which is one of the keys. If you consider the query to be batched
so that you consider every word in the sentence, the query becomes equal to the keys. A further special case is when the
query, values and keys are equal. This is called self-attention. This just means our attention mechanism uses the values
directly and there is no extra set of “keys” input to the layer.

13.7 Trainable Attention

There are no trainable parameters in our definitions above. How can you do learning with attention? Typically, you don’t
have trainable parameters in equations directly. Instead, you put the keys, values, and query through a dense layer (see
Standard Layers) before the attention. So when viewed as a layer, attention has no trainable parameters. When viewed as
a block with a dense layer and attention layer, it is trainable. We’ll see this now explicitly below.

13.8 Multi-head Attention Block

Inspired by the idea of convolutions with multiple filters, there is a block (group of layers) that splits to multiple parallel
attentions. These are called “multi-head attention”. If your values are shape (𝐿, 𝑉 ), you will get back a (𝐻, 𝑉 ) tensor,
where 𝐻 is the number of parallel attention layers (heads). If there are no trainable parameters in attention layers, what’s
the point of this though? Well, you must introduce weights. These are square weight matrices because we need all shapes
to remain constant among all the attention heads.
Consider an attention layer to be defined by 𝐴( ⃗𝑞,K,V). The multi-head attention is

[𝐴(W0
𝑞 ⃗𝑞,W0

𝑘K,W0
𝑣V), 𝐴(W1

𝑞 ⃗𝑞,W1
𝑘K,W1

𝑣V), … , 𝐴(W𝐻
𝑞 ⃗𝑞,W𝐻

𝑘 K,W𝐻
𝑣 V)] (13.11)

234 Chapter 13. Attention Layers



Deep Learning for Molecules and Materials

where each element of the output vector […] is itself an output vector from an attention layer, making 𝐻 (𝐿, 𝑉 ) shaped
tensors. So the whole output is an (𝐻, 𝐿, 𝑉 ) tensor. The most famous example of the multi-head attention block is in
transformers[VSP+17] where they use self-attention multi-head attention blocks.
Typically we apply multiple sequential blocks of attention, so need the values input to the next block to be of rank 2
again (instead of the rank 3 (𝐻, 𝐿, 𝑉 ) tensor). Thus the output from the multi-head attention is often reduced by matrix
multiplication with an (𝐻, 𝑉 , 𝑉 ) weight tensor or a (𝐻) tensor of weights so that you get back to rank 2. If this seems
confusing, see the example below.

13.9 Running This Notebook

Click the above to launch this page as an interactive Google Colab.

13.10 Code Examples

Let’s see how attention can be implemented in code. I will use random variables here for the different quantities but I will
indicate which variables should be trained with w_ and which should be inputs with i_.

13.10.1 Tensor-Dot Mechanism

We’ll begin with implementing the tensor-dot attention mechanism first. As an example, we’ll use a sequence length of
11 and a keys feature length of 4 and a values feature dimension of 2. Remember the keys and query must share feature
dimension size.

import numpy as np

def softmax(x, axis=None):
return np.exp(x) / np.sum(np.exp(x), axis=axis)

def tensor_dot(q, k):
b = softmax((k @ q) / np.sqrt(q.shape[0]))
return b

i_query = np.random.normal(size=(4,))
i_keys = np.random.normal(size=(11, 4))

b = tensor_dot(i_query, i_keys)
print("b = ", b)

b = [0.07087918 0.07219164 0.06015269 0.10149468 0.10727669 0.09912065
0.05998734 0.11274782 0.11425083 0.0857242 0.1161743 ]

As expected, we get out a vector ⃗𝑏 whose sum is 1.
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13.10.2 General Attention

Now let’s put this attention mechanism into an attention layer.

def attention_layer(q, k, v):
b = tensor_dot(q, k)
return b @ v

i_values = np.random.normal(size=(11, 2))
attention_layer(i_query, i_keys, i_values)

array([-0.05282571, -0.31739908])

We get two values, one for each feature dimension.

13.10.3 Self-attention

The change in self-attention is that we make queries, keys, and values equal. We need to make a small change in that the
queries are batched in this setting, so we should get a rank 2 output.

def batched_tensor_dot(q, k):
# a will be batch x seq x feature dim
# which is N x N x 4
# batched dot product in einstein notation
a = np.einsum("ij,kj->ik", q, k) / np.sqrt(q.shape[0])
# now we softmax over sequence
b = softmax(a, axis=1)
return b

def self_attention(x):
b = batched_tensor_dot(x, x)
return b @ x

i_batched_query = np.random.normal(size=(11, 4))
self_attention(i_batched_query)

array([[ 1.97386118e-01, 1.08634210e+00, 4.33386250e-01,
-3.35260258e-01],

[-1.37192214e-01, -1.78211543e-01, -2.69559605e-01,
8.99183346e-01],

[-2.51258035e-01, 2.87696723e-01, -8.26667694e-01,
-8.04712276e-01],

[ 2.72029726e-01, 1.45580621e+00, 7.64246022e-02,
-7.18977958e-01],

[ 1.45461898e+00, -2.11470358e-01, -1.10760529e-01,
-1.89908712e-01],

[-4.65778961e-01, -1.89541037e-01, -8.71743678e-02,
-6.86076184e-02],

[-2.97814193e-01, 4.06323035e-02, -1.01299609e-01,
-1.19522594e-01],

[-5.13777234e-01, 4.67803325e-01, -1.14513341e+00,

(continues on next page)
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(continued from previous page)

3.04912259e+00],
[ 8.75646635e-01, -8.42179012e-01, 2.06737738e-01,
2.95851809e-03],

[-1.62593449e-01, 1.47639900e-01, 2.22949149e-01,
2.42255767e-01],

[-1.83462799e-01, -4.84462962e-01, 4.53552354e-02,
-1.29851417e-01]])

We are given as output an 11 × 4 matrix, which is correct.

13.10.4 Adding Trainable Parameters

You can add trainable parameters to these steps by adding a weight matrix. Let’s do this for the self-attention. Although
keys, values, and query are equal in self-attention, I can multiply them by different weights. Just to demonstrate, I’ll have
the values change to feature dimension 2.

# weights should be input feature_dim -> desired output feature_dim
w_q = np.random.normal(size=(4, 4))
w_k = np.random.normal(size=(4, 4))
w_v = np.random.normal(size=(4, 2))

def trainable_self_attention(x, w_q, w_k, w_v):
q = x @ w_q
k = x @ w_k
v = x @ w_v
b = batched_tensor_dot(q, k)
return b @ v

trainable_self_attention(i_batched_query, w_q, w_k, w_v)

array([[-8.58958244e-01, -5.13178623e-01],
[ 1.10934020e+00, -9.60125897e-01],
[-1.03148431e+02, -5.87849015e+01],
[-7.45899826e+02, -4.25956711e+02],
[-8.41749719e-01, 7.38908114e+00],
[ 1.00737653e-01, -4.30026225e-02],
[ 2.55700480e-02, -5.37187276e-02],
[ 2.20041720e+00, -1.83378265e+00],
[-3.58311728e-01, 2.57271825e+00],
[ 3.43232307e-01, -1.98047339e-01],
[ 3.80090445e-02, 1.48158328e-02]])

Since we had our values change to feature dimension 2 with the weights, we get out an 11 × 2 output.

13.10. Code Examples 237



Deep Learning for Molecules and Materials

13.10.5 Multi-head

The only change for multi-head attention is that we have one set of weights for each head and we agree on how to combine
after running through the heads. I’ll just use a length 𝐻 vector of trainable weights. Other strategies are to concatenate
them or use a reduction (e.g., mean, max).

w_q_h1 = np.random.normal(size=(4, 4))
w_k_h1 = np.random.normal(size=(4, 4))
w_v_h1 = np.random.normal(size=(4, 2))
w_q_h2 = np.random.normal(size=(4, 4))
w_k_h2 = np.random.normal(size=(4, 4))
w_v_h2 = np.random.normal(size=(4, 2))
w_h = np.random.normal(size=2)

def multihead_attention(x, w_q_h1, w_k_h1, w_v_h1, w_q_h2, w_k_h2, w_v_h2):
h1_out = trainable_self_attention(x, w_q_h1, w_k_h1, w_v_h1)
h2_out = trainable_self_attention(x, w_q_h2, w_k_h2, w_v_h2)
# join along last axis so we can use dot.
all_h = np.stack((h1_out, h2_out), -1)
return all_h @ w_h

multihead_attention(i_batched_query, w_q_h1, w_k_h1, w_v_h1, w_q_h2, w_k_h2, w_v_h2)

array([[-6.63016684e-03, 1.27043347e+01],
[ 2.95100409e+00, -2.37259549e+01],
[ 1.43063566e-01, -1.54043340e+00],
[ 9.04642783e-01, 4.07777159e+00],
[ 8.16130174e+02, 1.30157842e+03],
[-2.11198155e+00, 6.61297066e-02],
[-5.95874193e-01, -5.99715526e-01],
[ 3.30108456e+01, -3.06059541e+02],
[ 2.12945954e+02, 3.73960944e+02],
[-1.86914546e-01, -1.51180116e+00],
[ 7.55107371e-02, 1.13459883e+00]])

As expected, we do get an 11 × 2 rank 2 output.

13.11 Attention in Graph Neural Networks

Recall that the key attribute of a graph neural network is permutation equivariance. We used reductions like sum or mean
over neighbors as the way to make the graph neural network layers be permutation equivariant. Attention layers are also
permutation invariant (when not batched) and equivariant (when batched). This has made attention a popular choice for
how to aggregate neighbor information. Attention layers are good at finding important neighbors and so are important with
high-degree graphs (lots of neighbors). This is rare in molecules, but you can just define all atoms to be connected and
then put distances as the edge attributes. Recall that graph convolution layers (GCN layer), and most GNN layers, only
allow information to propagate one-bond per layer. Thus joining all atoms and using attention can give you long-range
communication without so many layers. The disadvantage is that your network must now learn how to give attention to
the correct bonds/atoms.
Let’s see how attention fits into the Battaglia equations[BHB+18]. Recall that the Battaglia equations are general standard
equations for defining a GNN. Attention can appear in multiple places, but as discussed above it appears when considering
neighbors. Specifically, the query will be the 𝑖th node, and the keys/values will be some combination of neighboring node
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and edge features. There is no step in the Battaglia equations where this fits neatly, but we can split up the attention layer
as follows. Most of the attention layer will fit into the edge update equation:

⃗𝑒′
𝑘 = 𝜙𝑒 ( ⃗𝑒𝑘, ⃗𝑣𝑟𝑘, ⃗𝑣𝑠𝑘, �⃗�) (13.12)

Recall that this is a general equation and our choice of 𝜙𝑒() defines the GNN. ⃗𝑒𝑘 is the feature vector of edge 𝑘, ⃗𝑣𝑟𝑘 is the
receiving node feature vector for edge 𝑘, ⃗𝑣𝑠𝑘 is the sending node feature vector for edge 𝑘, �⃗� is the global graph feature
vector. We will use this step for attention mechanism where the query is the receiving node ⃗𝑣𝑟𝑘 and the keys/values are
composed of the senders and edges vectors. To be specific, we’ll use the approach from Zhang et al. [ZSX+18] with a
tensor-dot mechanism. They only considered node features and set the keys and values to be identical as the node features.
However, they put trainable parameters at each layer that translated the node features in to the keys/query.

⃗𝑞 = W𝑞 ⃗𝑣𝑟𝑘 (13.13)

K = W𝑘 ⃗𝑣𝑠𝑘 (13.14)

V = W𝑣 ⃗𝑣𝑠𝑘 (13.15)

⃗𝑏𝑘 = softmax( 1√
𝑑

⃗𝑞 ⋅ K) (13.16)

⃗𝑒′
𝑘 = ⃗𝑏𝑉 (13.17)

Putting it compactly into one equation:

⃗𝑒′
𝑘 = softmax( 1√

𝑑
W𝑞 ⃗𝑣𝑟𝑘 ⋅ W𝑘 ⃗𝑣𝑠𝑘)W𝑣 ⃗𝑣𝑠𝑘 (13.18)

Now we have weighted edge feature vectors from the attention. Finally, we sum over these edge features in the edge
aggregation step.

̄𝑒′
𝑖 = 𝜌𝑒→𝑣 (𝐸′

𝑖) = ∑ 𝐸′
𝑖 (13.19)

In Zhang et al. [ZSX+18], they used multi-headed attention as well. How would multi-headed attention work? Your
edge feature matrix 𝐸′

𝑖 now becomes an edge feature tensor, where axis 0 is edge (𝑘), axis 1 is feature, and axis 2 is the
head. Recall that the “head” just means which set ofWℎ

𝑞 ,Wℎ
𝑘 ,Wℎ

𝑣 we used. To reduce the tensor back to the expected
matrix, we simply use another weight matrix that maps from the last two axes (feature, head) down to features only. I will
write-out the indices explicitly to be more clear:

̄𝑒′
𝑖𝑙 = 𝜌𝑒→𝑣 (𝐸′

𝑖) = ∑
𝑘

𝑒′
𝑖𝑘𝑗ℎ𝑤𝑗ℎ𝑙 (13.20)

where 𝑗 is edge feature input index, 𝑙 is our output edge feature matrix, and 𝑘, ℎ, 𝑖 are defined as before. Transformer
is another name for a network built on multi-headed attention, so you’ll also see transformer graph neural networks
[MDM+20] building.

13.12 Chapter Summary

• Attention layers are inspired by human ideas of attention, but is fundamentally a weighted mean reduction.
• The attention layer takes in three inputs: the query, the values, and the keys. These inputs are often identical, where
the query is one key and the keys and the values are equal.

• They are good at modeling sequences, such as language.
• The attention vector should be normalized, which can be achieved using a softmax activation function, but the
attention mechanism equation is a hyperparameter.
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• Attention layers compute an attention vector with the attention mechanism, and then reduce it by computing the
attention-weighted average.

• Using hard attention (hardmax function) returns the maximum output from the attention mechanism.
• The tensor-dot followed by a softmax is the most common attention mechanism.
• Self-attention is achieved when the query, values, and the keys are equal.
• Attention layers by themselves are not trainable.
• Multi-head attention block is a group of layers that splits to multiple parallel attentions.

13.13 Cited References
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CHAPTER

FOURTEEN

DEEP LEARNING ON SEQUENCES

Deep learning on sequences is part of a broader long-term effort in machine learning on sequences. Sequences is a broad
term that includes text, integer sequences, DNA, and other ordered data. Deep learning on sequences often intersects
with another field called natural language processing (NLP). NLP is a much broader field than deep learning, but there is
quite a bit of overlap with sequence modeling.
We’ll focus on the application of deep learning on sequences and NLP to molecules and materials. NLP in chemistry
would at first appear to be a rich area, especially with the large amount of historic chemistry data existing only in plain
text. However, the most work in this area has been on representations of molecules as text via the SMILES[Wei88] (and
recently SELFIES [KHN+20]) encoding. There is nothing natural about SMILES and SELFIES though, so we should
be careful to discriminate between work on natural language (like identifying names of compounds in a research article)
from predicting the solubility of a compound from its SMILES. I hope there will be more NLP in the area, but publishers
prevent bulk access/ML on publications. Few corpuses (collections of natural language documents) exist for NLP on
chemistry articles.

Audience & Objectives
This chapter builds on Standard Layers and Attention Layers. After completing this chapter, you should be able to

• Define natural language processing and sequence modeling
• Recognize and be able to encode molecules into SMILES or other string encodings
• Understand RNNs and know some layer types
• Construct RNNs in seq2seq or seq2vec configurations
• Know the transformer architecture
• Understand how design can be made easier in a latent space

One advantage of working withmolecules as text relative to graph neural networks (GNNs) is that existingML frameworks
have many more features for working with text, due to the strong connection between NLP and sequence modeling.
Another reason is that it is easier to train generative models, because generating valid text is easier than generating valid
graphs. You’ll thus see generative/unsupervised learning of chemical space more often done with sequence models,
whereas GNNs are typically better for supervised learning tasks and can incorporate spatial features (e.g., [YCW20,
KGrossGunnemann20]). Outside of deep learning, graphical representations are in viewed as more robust than text
encodings when used in methods like genetic algorithms and chemical space exploration [BFSV19]. NLP with sequence
models can also be used to understand natural language descriptions of materials and molecules, which is essential for
materials that are defined with more than just the molecular structure.
In sequence modeling, unsupervised learning is very common. We can predict the probability of the next token (word
or character) in a sequence, like guessing the next word in a sentence. This does not require labels, because we only
need examples of the sequences. It is also called pre-training, because it precedes training on sequences with labels. For
chemistry this could be predicting the next atom in a SMILES string. For materials, this might be predicting the next
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word in a synthesis procedure. These pre-trained have statistical model of a language and can be fine-tuned (trained a
second time) for a more specific task, like predicting if a molecule will bind to a protein.
Another common task in sequence modeling (inluding NLP) is to convert sequences into continuous vectors. This doesn’t
always involve deep learning. Models that can embed sequences into a vector space are often called seq2vec or x2vec,
where x might be molecule or synthesis procedure.
Finally, we often see translation tasks where we go from one sequence language to another. A sequence to sequence
model (seq2seq) is similar to pre-training because it actually predicts probabilities for the output sequence.

14.1 Converting Molecules into Text

Before we can begin to use neural networks, we need to convert molecules into text. Simplified molecular-input line-entry
system (SMILES) is a de facto standard for converting molecules into a string. SMILES enables molecular structures to
be correctly saved in spreadsheets, databases, and input to models that work on sequences like text. Here’s an example
SMILES string: CC(NC)CC1=CC=C(OCO2)C2=C1. SMILESwas crucial to the field of cheminformatics and is widely
used today beyond deep learning. Some of the first deep learning work was with SMILES strings because of the ability
to apply NLP models to SMILES strings.
Let us imagine SMILES as a function whose domain is molecular graphs (or some equivalent complete description of a
molecule) and the image is a string. This can be thought of as an encoder that converts a molecular graph into a string.
The SMILES encoder function is not surjective – there are many strings that cannot be reached from decoding graphs.
The SMILES encoder function is injective – each graph has a different SMILES string. The inverse of this function, the
SMILES decoder, cannot have the domain of all strings because some strings do not decode to valid molecular graphs.
This is because of the syntax rules of SMILES. Thus, we can regard the domain to be restricted to valid SMILES string.
In that case, the decoder is surjective – all graphs are reachable via a SMILES string. The decoder is not injective –
multiple graphs can be reached by SMILES string.
This last point, the non-injectivity of a SMILES decoder, is a problem identified in database storage and retrieval of
compounds. Since multiple SMILES strings map to the same molecular graph, it can happen that multiple entries in a
database are actually the same molecule. One way around this is canonicalization which is a modification to the encoder
to make a unique SMILES string. It can fail though [OBoyle12]. If we restrict ourselves to valid, canonical SMILES,
then the SMILES decoder function is injective and surjective – bijective.

idempotent

One way to assess correctness of the canonicalization process is by testing the idempotent property of the SMILES
encoder/decoder pair. That is, if we decode/encode a canonical SMILES string we should get back the same string.

The difficulty of canonicalization and thus perceived weakness of SMILES in creating unique strings led (in part) to the
creation of InChi strings. InChI is an alternative that is inherently canonical. InChI strings are typically longer and involve
more tokens, which seems to affect their use in deep learning. InChI as a representation is often worse with the same
amount of data vs SMILES.
If you’ve read the previous chapters on equivariances (Input Data & Equivariances and Equivariant Neural Networks),
a natural question is if SMILES is permutation invariant. That is, if you change the order of atoms in the molecular
graph that has no effect on chemistry, is the SMILES string identical? Yes, if you use the canonical SMILES. So in a
supervised setting, using canonical SMILES gives an atom ordering permutation invariant neural network because the
representation will not be permuted after canonicalization. Be careful; you should not trust that SMILES you find in a
datset are canonical .
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14.1.1 SELFIES

Recent work fromKrenn et al. developed an alternative approach to SMILES called SELF-referencIng Embedded Strings
(SELFIES)[KHN+20]. Every string is a validmolecule. Note that the characters in SELFIES are not all ASCII characters,
so it’s not like every sentence encodes a molecule (would be cool though). SELFIES is an excellent choice for generative
models because any SELFIES string automatically decodes to a valid molecule. SELFIES, as of 2021, is not directly
canonicalized though and thus is not permutation invariant by itself. However, if you add canonical SMILES as an
intermediate step, then SELFIES are canonical. It seems that models which output a molecule (generative or supervised)
benefit from using SELFIES instead of SMILES because the model does not need to learn how to make valid strings – all
strings are already valid SELFIES [RZS20]. This benefit is less clear in supervised learning and no difference has been
observed empirically[CGR20]. Here’s a blog post giving an overview of SELFIES and its applications.

14.1.2 Demo

You can get a sense for SMILES and SELFIES in this demo page that uses a RNN (discussed below) to generate SMILES
and SELFIES strings.

14.1.3 Stereochemistry

SMILES and SELFIES can treat stereoisomers, but there are a few complications. rdkit, the dominant Python package,
cannot treat non-tetrahedral chiral centers with SMILES as of 2021. For example, even though SMILES according to its
specification can correctly distinguish cisplatin and transplatin, the implementation of SMILES in rdkit cannot. Other
examples of chirality that are present in the SMILES specification but not implementations are planar and axial chirality.
SELFIES relies on SMILES (specifically the rdkit implementation) and thus is also susceptible to this problem. This
is an issue for any organometallic compounds. In organic chemistry though, most chirality is tetrahedral and correctly
treated by rdkit.

14.1.4 What is a chemical bond?

More broadly, the idea of a chemical bond is a concept created by chemists [Bal11]. You cannot measure the existence
of a chemical bond in the lab and it is not some quantum mechanical operator with an observable. There are certain
molecules which cannot be represented by classic single,double,triple,aromatic bonded representations, like ferrocene or
diborane. This bleeds over to text encoding of a molecule where the bonding topology doesn’t map neatly to bond order.
The specific issue this can cause is that multiple unique molecules may appear to have the same encoding (non-injective).
In situations like this, it is probably better to just work with the exact 3D coordinates and then bond order or type is less
important than distance between atoms.

14.2 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages.

Tip: To install packages, execute this code in a new cell.

!pip install dmol-book

If you find install problems, you can get the latest working versions of packages used in this book here
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14.3 Recurrent Neural Networks

String is a synonym for sequence here. Character and symbol are synonyms for token (single element of the string).

Recurrent neural networks (RNN) have been by far the most popular approach to working with molecular strings. RNNs
have a critical property that they can have different length input sequences, making it appropriate for SMILES or SELF-
IES which both have variable length. RNNs have recurrent layers that consume an input sequence element-by-element.
Consider an input sequenceX which is composed of a series of vectors (recall that characters or words can be represented
with one-hot or embedding vectors) X = [ ⃗𝑥0, ⃗𝑥1, … , ⃗𝑥𝐿]. The RNN layer function is binary and takes as input the 𝑖th
element of the input sequence and the output from the 𝑖 − 1 layer function. You can write it as:

𝑓(𝑓 … 𝑓( ⃗𝑥0, ⃗0), ⃗𝑥1), ⃗𝑥2) … ⃗𝑥𝐿) (14.1)

Commonly we would like to actually see and look at the these intermediate outputs from the layer function
𝑓4( ⃗𝑥4, 𝑓3(…)) = ℎ⃗4. These ℎ⃗s are called the hidden state because of the connection between RNNs and Markov State
Models. We can unroll our picture of an RNN to be:

Fig. 14.1: Unrolled picture of RNN.

where the initial hidden state is assumed to be ⃗0, but could be trained. The output at the end is shown as ⃗𝑦. Notice there
are no subscripts on 𝑓 because we use the same function and weights at each step. This re-use of weights makes the choice
of parameter number independent of input lengths, which is also necessary to make the RNN accommodate arbitrary
length input sequences. It should be noted that the length of ⃗𝑦 may be a function of the input length, so that the ℎ⃗𝑖 may be
increasing in length at each step to enable an output ⃗𝑦. Some diagrams of RNNs will show that by indicating a growing
output sequence as an additional output from 𝑓( ⃗𝑥𝑖, ℎ𝑖−1).
Interestingly, the form of 𝑓( ⃗𝑥, ℎ⃗) is quite flexible based on the discussion above. There have been hundreds of ideas
for the function 𝑓 and it is problem dependent. The two most common are long short-term memory (LSTM) units and
gated recurrent unit (GRU). You can spend quite a bit of time trying to reason about these functions, understanding
how gradients propagate nicely through them, and there is an analogy about how they are inspired by human memory.
Ultimately, they are used because they perform well and are widely-implemented so we do not need to spend much time
on these details. The main thing to know is that GRUs are simpler and faster, but LSTMs seem to be better at more
difficult sequences. Note that ℎ⃗ is typically 1-3 different quantities in modern implementations. Another details is the
word units. Units are like the hidden state dimension, but because the hidden state could be multiple quantities (e.g.,
LSTM) we do not call it dimension.
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Actually, they are not used so much anymore because transformers seem to be a direct replacement for RNNs.

The RNN layer allows us to input an arbitrary length sequence and outputs a label which could depend on the length of
the input sequence. You can imagine that this could be used for regression or classification. ̂𝑦 would be a scalar. Or you
could take the output from an RNN layer into an MLP to get a class.

14.3.1 Generative RNNs

An interesting use case for an RNN is in unsupervised generative models, where we try to predict new examples. This
means that we’re trying to learn 𝑃(X) [SKTW18]. With a generative RNN, we predict the sequence one symbol at a time
by conditioning on a growing sequence. This is called autoregressive generation.

𝑃(X) = ∏ 𝑃( ⃗𝑥𝐿| ⃗𝑥𝐿−1, ⃗𝑥𝐿−2, … , ⃗𝑥0) … 𝑃( ⃗𝑥1| ⃗𝑥0)𝑃 ( ⃗𝑥0)) (14.2)

This is also called self-supervised instead of unsupervised learning. The distinction is that we’re creating labels by
chopping up our training data – so it is supervised. But it’s not quite supervised because labels do not need to be
supplied.

The RNN is trained to take as input a sequence and output the probability for the next character. Our network is trained
to be this conditional probability: 𝑃( ⃗𝑥𝑖| ⃗𝑥𝐿−𝑖, ⃗𝑥𝐿−𝑖, … , ⃗𝑥0). What about the 𝑃( ⃗𝑥0) term? Typically we just pick what
the first character should be. Or, we could create an artificial “start” character that marks the beginning of a sequence
(typically 0) and always choose that.
We can train the RNN to agree with 𝑃( ⃗𝑥𝑖| ⃗𝑥𝐿−𝑖, ⃗𝑥𝐿−𝑖, … , ⃗𝑥0) by taking an arbitrary sequence ⃗𝑥 and choosing a split
point ⃗𝑥𝑖 and training on the proceeding sequence elements. This is just multi-class classification. The number of classes
is the number of available characters and our model should output a probability vector across the classes. Recall the loss
for this cross-entropy.
When doing this process with SMILES an obvious way to judge success would be if the generated sequences are valid
SMILES strings. This at first seems reasonable and was used as a benchmark for years in this topic. However, this is a
low-bar: we can find valid SMILES in much more efficient ways. You can download 77 million SMILES [CGR20] and
you can find vendors that will give you a multi-million entry database of purchasable molecules. You can also just use
SELFIES and then an untrained RNN will generate only valid strings, since SELFIES is bijective. A more interesting
metric is to assess if your generated molecules are in the same region of chemical space as the training data[SKTW18].
I believe though that generative RNNs are relatively poor compared with other generative models in 2021. They are still
strong though when composed with other architectures, like VAEs [GomezBWD+18] or encoder/decoder [RZS20].
You can see a worked out example in Generative RNN in Browser.

14.4 Masking & Padding

As in our Graph Neural Networks chapter, we run into issues with variable length inputs. The easiest and most compute
efficient way to treat this is to pad (and/or trim) all strings to be the same length, making it easy to batch examples. A
memory efficient way is to not batch and either batch gradients as a separate step or trim your sequences into subsequences
and save the RNN hidden-state between them. Due to the way that NVIDIA has written RNN kernels, padding should
always be done on the right (sequences all begin at index 0). The character used for padding is typically 0. Don’t forget,
we will always first convert our string characters to integers corresponding to indices of our vocabulary (see Standard
Layers). Thus, remember to make sure that the index 0 should be reserved for padding.
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Masking is used for two things. Masking is used to ensure that the padded values are not accidentally considered in
training. This is framework dependent and you can read about Keras here, which is what we’ll use. The second use for
masking is to do element-by-element training like the generative RNN. We train each time with a shorter mask, enabling
it to see more of the sequence. This prevents you from needing to slice-up the training examples into many shorter
sequences. This idea of a right-mask that prevents the model for using characters farther in the sequence is sometimes
called causal masking because we’re preventing characters from the “future” affecting the model.

14.5 RNN Solubility Example

Let’s revisit our solubility example from before. We’ll use a GRU to encode the SMILES string into a vector and then
apply a dense layer to get a scalar value for solubility. Let’s revisit the solubility AqSolDB[SKE19] dataset from Regression
& Model Assessment. Recall it has about 10,000 unique compounds with measured solubility in water (label) and their
SMILES strings. Many of the steps below are explained in the Standard Layers chapter that introduces Keras and the
principles of building a deep model.
I’ve hidden the cell below which sets-up our imports and shown a few rows of the dataset.

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import dmol

soldata = pd.read_csv(
"https://github.com/whitead/dmol-book/raw/master/data/curated-solubility-dataset.

↪csv"
)
features_start_at = list(soldata.columns).index("MolWt")
np.random.seed(0)

soldata.head()

ID Name \
0 A-3 N,N,N-trimethyloctadecan-1-aminium bromide
1 A-4 Benzo[cd]indol-2(1H)-one
2 A-5 4-chlorobenzaldehyde
3 A-8 zinc bis[2-hydroxy-3,5-bis(1-phenylethyl)benzo...
4 A-9 4-({4-[bis(oxiran-2-ylmethyl)amino]phenyl}meth...

InChI \
0 InChI=1S/C21H46N.BrH/c1-5-6-7-8-9-10-11-12-13-...
1 InChI=1S/C11H7NO/c13-11-8-5-1-3-7-4-2-6-9(12-1...
2 InChI=1S/C7H5ClO/c8-7-3-1-6(5-9)2-4-7/h1-5H
3 InChI=1S/2C23H22O3.Zn/c2*1-15(17-9-5-3-6-10-17...
4 InChI=1S/C25H30N2O4/c1-5-20(26(10-22-14-28-22)...

InChIKey \
0 SZEMGTQCPRNXEG-UHFFFAOYSA-M
1 GPYLCFQEKPUWLD-UHFFFAOYSA-N
2 AVPYQKSLYISFPO-UHFFFAOYSA-N
3 XTUPUYCJWKHGSW-UHFFFAOYSA-L
4 FAUAZXVRLVIARB-UHFFFAOYSA-N

(continues on next page)
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(continued from previous page)

SMILES Solubility SD \
0 [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C -3.616127 0.0
1 O=C1Nc2cccc3cccc1c23 -3.254767 0.0
2 Clc1ccc(C=O)cc1 -2.177078 0.0
3 [Zn++].CC(c1ccccc1)c2cc(C(C)c3ccccc3)c(O)c(c2)... -3.924409 0.0
4 C1OC1CN(CC2CO2)c3ccc(Cc4ccc(cc4)N(CC5CO5)CC6CO... -4.662065 0.0

Ocurrences Group MolWt ... NumRotatableBonds NumValenceElectrons \
0 1 G1 392.510 ... 17.0 142.0
1 1 G1 169.183 ... 0.0 62.0
2 1 G1 140.569 ... 1.0 46.0
3 1 G1 756.226 ... 10.0 264.0
4 1 G1 422.525 ... 12.0 164.0

NumAromaticRings NumSaturatedRings NumAliphaticRings RingCount TPSA \
0 0.0 0.0 0.0 0.0 0.00
1 2.0 0.0 1.0 3.0 29.10
2 1.0 0.0 0.0 1.0 17.07
3 6.0 0.0 0.0 6.0 120.72
4 2.0 4.0 4.0 6.0 56.60

LabuteASA BalabanJ BertzCT
0 158.520601 0.000000e+00 210.377334
1 75.183563 2.582996e+00 511.229248
2 58.261134 3.009782e+00 202.661065
3 323.755434 2.322963e-07 1964.648666
4 183.183268 1.084427e+00 769.899934

[5 rows x 26 columns]

We’ll extract our labels and convert SMILES into padded characters. We make use of a tokenizer, which is essentially
a look-up table for how to go from the characters in a SMILES string to integers. To make our model run faster, I will
filter out very long SMILES strings.

# filter out long smiles
smask = [len(s) <= 96 for s in soldata.SMILES]
print(f"Removed {soldata.shape[0] - sum(smask)} long SMILES strings")
filtered_soldata = soldata[smask]

# make tokenizer with 128 size vocab and
# have it examine all text in dataset
vocab_size = 128
tokenizer = tf.keras.preprocessing.text.Tokenizer(

vocab_size, filters="", char_level=True
)
tokenizer.fit_on_texts(filtered_soldata.SMILES)

Removed 285 long SMILES strings

# now get padded sequences
seqs = tokenizer.texts_to_sequences(filtered_soldata.SMILES)
padded_seqs = tf.keras.preprocessing.sequence.pad_sequences(seqs, padding="post")

# Now build dataset

(continues on next page)
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(continued from previous page)

data = tf.data.Dataset.from_tensor_slices((padded_seqs, filtered_soldata.Solubility))
# now split into val, test, train and batch
N = soldata.shape[0]
split = int(0.1 * N)
test_data = data.take(split).batch(16)
nontest = data.skip(split)
val_data, train_data = nontest.take(split).batch(16), nontest.skip(split).shuffle(

1000
).batch(16)

We’re now ready to build our model. We will just use an embedding then RNN and some dense layers to get to a final
predicted solubility.

model = tf.keras.Sequential()

# make embedding and indicate that 0 should be treated as padding mask
model.add(

tf.keras.layers.Embedding(input_dim=vocab_size, output_dim=16, mask_zero=True)
)

# RNN layer
model.add(tf.keras.layers.GRU(32))
# a dense hidden layer
model.add(tf.keras.layers.Dense(32, activation="relu"))
# regression, so no activation
model.add(tf.keras.layers.Dense(1))

model.summary()

Model: "sequential"

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

embedding (Embedding) (None, None, 16) 2048

gru (GRU) (None, 32) 4800

dense (Dense) (None, 32) 1056
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dense_1 (Dense) (None, 1) 33

=================================================================

Total params: 7,937

Trainable params: 7,937

Non-trainable params: 0

_________________________________________________________________

Now we’ll compile our model and train it. This is a regression problem, so we use mean squared error for our loss.

model.compile(tf.optimizers.Adam(1e-2), loss="mean_squared_error")
result = model.fit(train_data, validation_data=val_data, epochs=25, verbose=0)

plt.plot(result.history["loss"], label="training")
plt.plot(result.history["val_loss"], label="validation")
plt.legend()
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.show()

As usual, we could keep training and I encourage you to explore adding regularization or modifying the architecture. Let’s
now see how the test data looks.

14.5. RNN Solubility Example 249



Deep Learning for Molecules and Materials

# evaluate on test data
yhat = []
test_y = []
for x, y in test_data:

yhat.extend(model(x).numpy().flatten())
test_y.extend(y.numpy().flatten())

yhat = np.array(yhat)
test_y = np.array(test_y)

# plot test data
plt.plot(test_y, test_y, ":")
plt.plot(test_y, yhat, ".")
plt.text(min(y) + 1, max(y) - 2, f"correlation = {np.corrcoef(test_y, yhat)[0,1]:.3f}

↪")
plt.text(min(y) + 1, max(y) - 3, f"loss = {np.sqrt(np.mean((test_y - yhat)**2)):.3f}")
plt.title("Testing Data")
plt.show()

Linear regression from Regression & Model Assessment still wins, but this demonstrates the use of an RNN for this task.

14.6 Transformers

Transformers have been well-established now as the current state of the art for language modeling tasks. The transformer
architecture is actually just self-attention repeated in multiple layers. The paper describing the architecture was quite a
breakthrough. At the time, the best models used convolutions, recurrence, attention and encoder/decoder. The paper
title was “attention is all you need” and that is basically the conclusion [VSP+17]. They found that multi-head attention
(including self-attention) was what mattered and this led to transformers. Transformers are simple and scalable because
each layer is nearly the same operation. This has led to simple “scaling-up the language model” resulting in things like
GPT-3, which has billions of parameters and cost millions of dollars to train. GPT-3 is also surprisingly good and versatile.
The single model is able to answer questions, describe computer code, translate languages, and infer recipe instructions
for cookies. I highly recommend reading the paper, it’s quite interesting[BMR+20].
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Considering the whole sequence simultaneously is also possible with bi-directional RNNs that read a sequence simul-
taneously from both ends – meaning context before and after a missing character can be used for training.

There are two principles from the transformer that interest us. One is of course that it is a simple and effective replacement
for RNNs. The second is that the transformer considers the whole sequence simultaneously. This has a few consequences.
The first is that it is again input size dependent. However, we can pad andmask to get around that. The second consequence
is that the self-supervised/unsupervised training can be more interesting than just predict the next character in the string.
Instead, we can randomly delete characters and ask the transformer to infer themissing character. This is how transformers
are typically “pre-trained” – by feeding a bunch of masked sequences to teach the transformer the language. Then, if
desired, the transformer can be refined with labels on your specific task. Transformers and their pre-training training
procedure have led to pre-trained chemistry specific models that can be downloaded and used immediately on chemistry
data, like ChemBERTa [CGR20]. These pre-trained models have been trained on 77 million molecules and so should
already have some “intuition” about molecular structures and they indeed do well on supervised learning tasks.

14.6.1 Architecture

The transformer is fundamentally made-up of layers of multi-head attention blocks as discussed in Attention Layers. You
can get a detailed overview of the transformer architecture here. The overall architecture is an encoder/decoder like seen
in Variational Autoencoder. Like the variational autoencoder, the decoder portion can be discarded and only the encoder
is used for supervised tasks. Thus, you might pre-train the encoder/decoder with self-supervised training (strings with
withheld characters) on a large dataset without labels and then use only the encoder for a regression tasks with a smaller
dataset.

Some have recently argued that convolutions might be as effective as transformers with some tuning. If substantiated,
this could upend NLP because convolutions are simpler to understand, parallelize, and interpret. [TDG+21]

What exactly is going in and out of the encoder/decoder? The transformer is an example of a sequence to sequence
(seq2seq) model and the most obvious interpretation is translating between two languages like English to French. The
encoder takes in English and the decoder produces French. Or maybe SMILES to IUPAC name. However, that requires
“labels” (the paired sequence). To do self-supervised training pre-training, we need the input to the encoder to be a
sequence missing some values and the decoder output to be the same sequence with probabilities for each position values
filled in. This is called masked self-supervised training. If you pre-train in this way, you can do two tasks with your
pre-trained encoder/decoder. You can use the encoder alone as a way to embed a string into real numbers and then a
downstream task like predicting a molecule’s enthalpy of formation from its SMILES string. The other way to use a model
trained this way is for autoregressive generation. The input might be a few characters or a prompt [RM21] specifically
crafted like a question. This is similar the generative RNN, although it allows more flexibility.

Self-supervised training is not just for transformers! It has been successfully applied to graph neural networks as well
[WWCF21].

There are many details to transformers and “hand-tuned” hyperparameters. Examples in modern transformers are layer
normalizations (similar to batch normalization), embeddings, dropout, weight decay, learning rate decay, and position
information encoding [LOG+19]. Position information is quite an interesting topic – you need to include the location of
a token (character) in its embedding. Was it the first character or last character? This is key because when you compute
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the attention between tokens, the relative location is probably important. Some recent promising work proposed a kind
of phase/amplitude split, where the position is the phase and the amplitude is the embedding[SLP+21].
If you would like to see how to implement a real transformer with most of these details, take a look at this Keras tutorial.
Because transformers are so tightly coupled with pre-training, there has been a great deal of effort in pre-training models.
Aside from GPT-3, a general model pre-trained on an enormous corpus of billions of sequences from multiple languages,
there are many language specific pre-trained models. Hugging Face is a company and API that hosts pre-trained trans-
formers for specific language models like Chinese language, XML, SMILES, or question and answer format. These can
be quickly downloaded and utilized, enabling rapid use of state-of-the art language models.

14.7 Transformer Example

Let’s see a complete Transformer example using the transformer library. There are three steps we’ll take:
1. Tokenization
2. Training
3. Inference

The tokenization is a more principled way of converting SMILES or other text into integers. The embedding layer we
had above converted each character into a single integer, but it may be better to put (OH) – an alcohol group – into its
own token.

14.8 Using the Latent Space for Design

One of the most interesting applications of these encoder/decoder seq2seq models in chemistry is their use for doing
optimal design of a molecule. We pre-train an encoder/decoder pair with masking. The encoder brings our molecule to a
continuous representation (seq2vec). Then we can do regression in this vector space for whatever property we would like
(e.g., solubility). Then we can optimize this regressed model, finding an input vector that is a minimum or maximum,
and finally convert that input vector into a molecule using the decoder [GomezBWD+18]. The vector space output by
the encoder is called the latent space like we saw in Variational Autoencoder. Of course, this works for RNN seq2seq
models, transformers, or convolutions.

14.9 Representing Materials as Text

Materials are an interesting problem for deep learning because they are not defined by a single molecule. There can
be information like the symmetry group or components/phases for a composite material. This creates a challenge for
modeling, especially for real materials that have complexities like annealing temperature, additives, and age. From a
philosophical point of view, a material is defined by how it was constructed. Practically that means a material is defined
by the text describing its synthesis [BDC+18]. This is an idea taken to its extreme in Tshitoyan et al. [TDW+19] who
found success in representing thermoelectrics via the text describing their synthesis [SC16]. This work is amazing to me
because they had to manually collect papers (publishers do not allow ML/bulk download on articles) and annotate the
synthesis methods. Their seq2vec model is relatively old (2 years!) and yet there has not been much progress in this area.
I think this is a promising direction but challenging due to the data access limitations. For example, recent progress by
Friedrich et al. [FAT+20] built a pre-trained transformer for solid oxide fuel cells materials but their corpus was limited
to open access articles (45) over a 7 year period. This is one critical line of research that is limited due to copyright issues.
Text can be copyrighted, not data, but maybe someday a court can be convinced that they are interchangeable.
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14.10 Applications

As discussed above, molecular design has been one of themost popular areas for sequencemodels in chemistry [SKTW18,
GomezBWD+18, MFGS18]. Transformers have been found to be excellent at predicting chemical reactions. Schwaller
et al. [SPZ+20] have shown how to do retrosynthetic pathway analysis with transformers. The transformers take as input
just the reactants and reagents and can predict the products. The models can be calibrated to include uncertainty estimates
[SLG+19] and predict synthetic yield [SVLR20]. Beyond taking molecules as input, Vaucher et al. trained a seq2seq
transformer that can translate the unstructured methods section of a scientific paper into a set of structured synthetic steps
[VZG+20]. Finally, Schwaller et al. [SPV+21] trained a transformer to classify reactions into organic reaction classes
leading to a fascinating map of chemical reactions.

14.11 Summary

• Text is a natural representation of both molecules and materials
• SMILES and SELFIES are ways to convert molecules into strings
• Recurrent neural networks (RNNs) are an input-length independent method of converting strings into vectors for
regression or classification

• RNNs can be trained in seq2seq (encoder/decoder) setting by having it predict the next character in a sequence.
This yields a model that can autoregressively generate new sequences/molecules

• Withholding or masking sequences for training is called self-supervised training and is a pre-training step for
seq2seq models to enable them to learn the properties of a language like English or SMILES

• Transformers are currently the best seq2seq models
• The latent space of seq2seq models can be used for molecular design
• Materials can be represented as text which is a complete representation for many materials
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CHAPTER

FIFTEEN

VARIATIONAL AUTOENCODER

A variational autoencoder (VAE) is a kind of generative deep learning model that is capable of unsupervised learning
[KW13]. Unsupervised learning is the process of fitting models to unlabeled data. A generative model is a specific kind
of unsupervised learning model that is capable of generating new data points that were not seen in training. Generative
models can be viewed as a trained probability distribution over that data: P̂(𝑥). You can then draw samples from this
distribution. It is generally too difficult to construct P̂(𝑥) directly, and so most generative models make some changes to
the structure.

Audience & Objectives
This chapter builds on Standard Layers and Input Data & Equivariances. It also assumes a good knowledge of probability
theory, including conditional probabilities. You can read my notes or any introductory probability text to get an overview.
After completing this chapter, you should be able to

• Understand the derivation for the loss function of a VAE
• Construct an encoder/decoder pair in JAX and train it with the VAE loss function
• Sample from the decoder
• Rebalance VAE loss for reconstruction or disentangling

AVAE approaches this problem by introducing a dummy random variable 𝑧, which we define to have a known distribution
(e.g., normal). We can then rewrite P̂(𝑥) as:

P̂(𝑥) = ∫ P̂ (𝑥|𝑧)P(𝑧) 𝑑𝑧 (15.1)

using the definition of a marginal and conditional probability. Training P̂ (𝑥|𝑧) directly is not really possible either, but
we can create a symmetric distribution P̂ (𝑧|𝑥) and train both simultaneously. This symmetric distribution only is created
to help us train; our end goal is to find P̂ (𝑥|𝑧) so that we can obtain P̂(𝑥). VAEs were first introduced in [KW13].
A VAE is thus a set of two trained conditional probability distributions that operate on the data 𝑥 and latent variables 𝑧.
The first conditional is 𝑝𝜃(𝑥|𝑧), where 𝜃 indicates the trainable parameters that we will be fitting. 𝑝𝜃(𝑥|𝑧) is known as
the “decoder” because it goes from the latent variable 𝑧 to 𝑥. The decoder analogy is because you can view 𝑧 as a kind of
encoded compression of 𝑥. The other conditional is 𝑞𝜙(𝑧|𝑥) and is known as the encoder.
Remember we always know 𝑝(𝑧) because we chose it to be a defined distribution — that is the key idea. We’re grounding
our encoder/decoder by having them communicate through 𝑝(𝑧), which we know. For the rest of this chapter we’ll take
𝑝(𝑧) to be a standard normal distribution. 𝑝(𝑧) can be other distributions though. It can even be trained using the
techniques from the Normalizing Flows.
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15.1 VAE Loss function

To see how 𝑞𝜙(𝑧|𝑥) enables us to train, let’s construct our loss. The loss function should only take in a value 𝑥𝑖 and
trainable parameters. There are no labels. Our goal is to make our VAE model be able to generate 𝑥𝑖, so the loss is the
log likelihood that we saw 𝑥𝑖: log [P̂(𝑥𝑖)].

Log likelihood is the loss of choice for fitting distributions to data. It is a likelihood, not a probability, because the
distribution parameters are changing, not the random variables (which are set to be the data). We take a log so that we
can sum/average over data to aggregate multiple points due to properties of logs.

15.1.1 Derivation

Note: The derivation below is a little unusual. Most derivations rely on Bayes’ theorem following a principle of evidence
lower bound (ELBO). I thought I’d give a different derivation since you can readily find examples of the ELBO in many
places.

Remember we do not have an expression for P̂(𝑥𝑖). We have 𝑝𝜃(𝑥𝑖|𝑧). To connect themwe’ll use the following expression:

log [P̂(𝑥𝑖)] = log [∫ 𝑝𝜃(𝑥𝑖|𝑧)P(𝑧) 𝑑𝑧] = log E𝑧 [𝑝𝜃(𝑥𝑖|𝑧)] (15.2)

where we have rewritten the integral more compactly by using the definition of expectation. This expression requires
integrating over the latent variable, which is not easy since as you can guess 𝑝𝜃(𝑥|𝑧) is a neural network and it’s not
straightforward to integrate over the input (𝑧) of a neural network. Instead, we can approximate this integral by sampling
some 𝑧s from 𝑃(𝑧)

We actually could just integrate over the latent variables. This is called a normalizing flow and is a class of generative
models we’ll see later.

log E𝑧 [𝑝𝜃(𝑥𝑖|𝑧)] ≈ log[ 1
𝑁

𝑁
∑

𝑗
𝑝𝜃(𝑥𝑖|𝑧𝑗)] , 𝑧𝑗 ∼ 𝑃(𝑧𝑗) (15.3)

You’ll find though that grabbing 𝑧’s from 𝑃(𝑧) is not so efficient at approximating this integral, because you need the 𝑧’s
to be likely to have led to the observed 𝑥𝑖. The integral is dominated by the 𝑝𝜃(𝑥𝑖|𝑧𝑗) terms. This is where we use 𝑞(𝑧|𝑥):
it can provide efficient guesses for 𝑧𝑗. To approximate log E𝑧 [𝑝𝜃(𝑥𝑖|𝑧)] with samples from 𝑞(𝑧|𝑥𝑖), we need to account
for the fact that sampling from 𝑞(𝑧|𝑥𝑖) is not identical to sampling from 𝑃(𝑧) by adding their ratio to the expression
(importance sampling).

log E𝑧 [𝑝𝜃(𝑥𝑖|𝑧)] ≈ log[ 1
𝑁

𝑁
∑

𝑗
𝑝𝜃(𝑥𝑖|𝑧𝑗)

𝑃 (𝑧𝑗)
𝑞𝜙(𝑧𝑗|𝑥𝑖)

] , 𝑧𝑗 ∼ 𝑞𝜙(𝑧𝑗|𝑥𝑖) (15.4)

The ratio of 𝑃(𝑧)/𝑞𝜙(𝑧|𝑥) enables our numerical approximation of the expectation. For notational purposes though
I’ll go back to the exact expression, with the understanding that when we go to implementation we’ll use the numerical
approximation:

log E𝑧 [𝑝𝜃(𝑥𝑖|𝑧)] = log E𝑧∼𝑞𝜙(𝑧|𝑥𝑖) [𝑝𝜃(𝑥𝑖|𝑧) 𝑃 (𝑧)
𝑞𝜙(𝑧|𝑥𝑖)

] (15.5)
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Notice how the expectation now is wrt 𝑧 ∼ 𝑞𝜙(𝑧|𝑥𝑖) since we have that importance sampling ratio in the expression.
Now if the log was on the inside of our expectation, we could simplify this. We can actually swap the order of expectation
and the log using Jensen’s Inequality for the concave log function. The consequence is that our loss is no longer an exact
estimate of the log likelihood, but a lower bound.

log E […] ≥ E [log…] (15.6)

We’ll use that and can now separate into two terms by properties of the log

E𝑧∼𝑞𝜙(𝑧|𝑥𝑖) [log(𝑝𝜃(𝑥𝑖|𝑧) 𝑃 (𝑧)
𝑞𝜙(𝑧|𝑥𝑖)

)] = E𝑧∼𝑞𝜙(𝑧|𝑥𝑖) [log 𝑝𝜃(𝑥𝑖|𝑧)] + E𝑧∼𝑞𝜙(𝑧|𝑥𝑖) [log( 𝑃(𝑧)
𝑞𝜙(𝑧|𝑥𝑖)

)] (15.7)

Remember we always planned to re-introduce numerically approximate the expectation. However, the right-hand side
does not involve 𝑝𝜃(𝑥|𝑧), so we do not need to integrate over a neural network input. We just need to integrate over
the output of 𝑞𝜙(𝑧|𝑥) and 𝑃(𝑧), which is a standard normal distribution. We’ll see later on that we can make the output
of 𝑞𝜙(𝑧|𝑥) specifically be a normal distribution to make sure we can easily compute the integral. Finally, we can use
an identity that relates the Kullback–Leibler divergence (KL divergence) (a binary functional of two probabilities) to the
right-hand side term:

E𝑝(𝑥) [ln(𝑞(𝑥)
𝑝(𝑥))] = −KL [𝑝(𝑥)||𝑞(𝑥)] (15.8)

arriving at our final result:

15.1.2 Log-Likelihood Approximation

log [P̂(𝑥𝑖)] ≥ E𝑧∼𝑞𝜙(𝑧|𝑥𝑖) [log 𝑝𝜃(𝑥𝑖|𝑧)] − KL [𝑞𝜙(𝑧|𝑥𝑖)||𝑃 (𝑧)] (15.9)
The left term is called the reconstruction loss and assess how close we come after going from 𝑥 → 𝑧 → 𝑥 in expec-
tation. The right-hand term is the KL-divergence and measures how close our encoder is to our defined 𝑃(𝑧) (normal
distribution). The right-hand term involves an integral that can be computed analytically and no sampling is required to
estimate it. Remember, in the derivation the KL-divergence term appeared as a correction term to account for the fact
that our loss doesn’t use 𝑃(𝑧) directly, but instead uses the encoder 𝑞𝜙(𝑧|𝑥𝑖) which generates 𝑧’s from our training data
point 𝑥𝑖. The last step is that we want to minimize our loss, so we need to add a minus sign.

Note: The log-likelihood equation we’ve derived for VAE training is also sometimes called the evidence lower bound
(ELBO). ELBO is a general equation used in Bayesian modeling, which usually has nothing to do with VAEs.

ℒ(𝑥𝑖, 𝜙, 𝜃) = −E𝑧∼𝑞𝜙(𝑧|𝑥𝑖) [log 𝑝𝜃(𝑥𝑖|𝑧)] + KL [𝑞𝜙(𝑧|𝑥𝑖)||𝑃 (𝑧)] (15.10)
Remember that in practice, we will approximate the expectation in the reconstruction loss by sampling 𝑧’s from the
decoder 𝑞𝜙(𝑧|𝑥). We’ll only use a single sample.

15.2 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages.

Tip: To install packages, execute this code in a new cell.

!pip install dmol-book

If you find install problems, you can get the latest working versions of packages used in this book here
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15.3 VAE for Discrete Data

The features are classes; we are not trying to make a classifier that takes in features and outputs classes. VAEs are for
unlabeled data.

Our first example will be to generate new example classes from a distribution of possible classes. An application for this
might be to sample conditions of an experiment. Our features 𝑥 are one-hot vectors indicating class and our goal is to
learn the distribution 𝑃 (𝑥) so that we can sample new 𝑥’s. Learning the latent space can also provide a way to embed
your features into low dimensional continuous vectors, allowing you to do things like optimization because you’ve moved
from discrete classes to continuous vectors. That is an extra benefit, our loss and training goal are to create a new 𝑃(𝑥).
Let’s think for a moment about our encoder and decoder. 𝑞𝜙(𝑧|𝑥), the encoder, should give out a probability distribution
for vectors of real numbers 𝑧 and take an input of a one-hot vector 𝑥. This sounds difficult; we’ve never seen a neural
network output a probability distribution over real number vectors. We can simplify though. We defined 𝑃(𝑧) to be
normally distributed, let’s assume that the form of 𝑞𝜙(𝑧|𝑥) should be normal. Then our neural network could output the
parameters to a normal distribution (mean/variance) for 𝑧, rather than trying to output a probability at every possible 𝑧
value. It’s up to you if you want to have 𝑞𝜙(𝑧|𝑥) output a D-dimensional Gaussian distribution with a covariance matrix or
just output D independent normal distributions. Having 𝑞𝜙(𝑧|𝑥) output a normal distribution also allows us to analytically
simplify the expectation/integral in the KL-divergence term.
The decoder 𝑝𝜃(𝑥|𝑧) should output a probability distribution over classes given a real vector 𝑧. We can use the same form
we used for classification: softmax activation. Just remember that we’re not trying to output a specific 𝑥, just a probability
distribution of 𝑥’s.
Choices we have to make are the hyperparameters of the encoder and decoder and the size of 𝑧. It makes sense to have
the encoder and decoder share as many hyperparameters as possible, since they’re somewhat symmetric. Just remember
that the encoder in our example is outputting a mean and variance, which means using regression, and the decoder is
outputting a normalized probability vector, which means using softmax. Let’s get started!

15.3.1 The Data

The data is 1024 points ⃗𝑥𝑖 where each ⃗𝑥𝑖 is a 32 dimensional one-hot vector indicating class. We won’t define the classes
– the data is synthetic. Since a VAE is unsupervised learning, there are no labels. Let’s start by examining the data. We’ll
sum the occurrences of each class to see what the distribution of classes looks like. The hidden cells show how the data
was generated

import numpy as np
import matplotlib.pyplot as plt
import urllib
import seaborn as sns
import dmol

plt.bar(np.arange(nclasses), height=np.sum(class_data, axis=0))
plt.xlabel("Class Index")
plt.ylabel("Frequency")
plt.show()
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15.3.2 The encoder

Our encoder will be a basic two hidden layer network. We will output a 𝐷 × 2 matrix, where the first column is means
and the second is standard deviations for independent normal distributions that make up our guess for 𝑞(𝑧|𝑥). Outputting
a mean is simple, just use no activation. Outputting a standard deviation is unusual because they should be on (0, ∞).
jax.nn.softplus can accomplish this.

import jax.numpy as jnp
from jax.example_libraries import optimizers
import jax
import functools

def random_vec(size):
return np.random.normal(size=size, scale=1)

latent_dim = 1
hidden_dim = 16
input_dim = nclasses

def encoder(x, theta):
"""The encoder takes as input x and gives out probability of z,
expressed as normal distribution parameters. Assuming each z dim is independent,
output |z| x 2 matrix"""
w1, w2, w3, b1, b2, b3 = theta
hx = jax.nn.relu(w1 @ x + b1)
hx = jax.nn.relu(w2 @ hx + b2)
out = w3 @ hx + b3
# slice out stddeviation and make it positive
reshaped = out.reshape((-1, 2))
# we slice with ':' to keep rank same
std = jax.nn.softplus(reshaped[:, 1:])

(continues on next page)
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(continued from previous page)

mu = reshaped[:, 0:1]
return jnp.concatenate((mu, std), axis=1)

def init_theta(input_dim, hidden_units, latent_dim):
"""Create inital theta parameters"""
w1 = random_vec(size=(hidden_units, input_dim))
b1 = np.zeros(hidden_units)
w2 = random_vec(size=(hidden_units, hidden_units))
b2 = np.zeros(hidden_units)
# need to params per dim (mean, std)
w3 = random_vec(size=(latent_dim * 2, hidden_units))
b3 = np.zeros(latent_dim * 2)
return [w1, w2, w3, b1, b2, b3]

# test them
theta = init_theta(input_dim, hidden_dim, latent_dim)
encoder(class_data[0], theta)

WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0␣
↪and rerun for more info.)

DeviceArray([[0.67200387, 0.00897247]], dtype=float32)

The decoder should output a vector of probabilities for ⃗𝑥. This can be achieved by just adding a softmax to the output.
The rest is nearly identical to the encoder.

def decoder(z, phi):
"""decoder takes as input the latant variable z and gives out probability of x.
Decoder outputes a real number, then we use softmax activation to get probability␣

↪across
possible values of x.
"""
w1, w2, w3, b1, b2, b3 = phi
hz = jax.nn.relu(w1 @ z + b1)
hz = jax.nn.relu(w2 @ hz + b2)
out = jax.nn.softmax(w3 @ hz + b3)
return out

def init_phi(input_dim, hidden_units, latent_dim):
"""Create inital phi parameters"""
w1 = random_vec(size=(hidden_units, latent_dim))
b1 = np.zeros(hidden_units)
w2 = random_vec(size=(hidden_units, hidden_units))
b2 = np.zeros(hidden_units)
w3 = random_vec(size=(input_dim, hidden_units))
b3 = np.zeros(input_dim)
return [w1, w2, w3, b1, b2, b3]

# test it out
phi = init_phi(input_dim, hidden_dim, latent_dim)
decoder(np.array([1.2] * latent_dim), phi)
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DeviceArray([1.4369683e-11, 2.8801292e-29, 3.2273541e-20, 7.1850895e-22,
1.0793007e-22, 2.8247908e-20, 8.5903684e-09, 5.0419994e-28,
3.8993281e-25, 1.9217204e-23, 1.3062071e-12, 2.6221546e-16,
4.2119552e-23, 1.1967079e-20, 4.3358453e-27, 3.8699083e-20,
1.3168897e-22, 3.3939088e-20, 5.1175348e-27, 3.9091000e-24,
1.0000000e+00, 1.6622006e-19, 2.5878642e-29, 3.6575650e-17,
5.0655268e-25, 3.9531148e-23, 5.9112239e-20, 3.3607102e-19,
6.1983621e-12, 2.7988031e-19, 9.9489904e-13, 3.6622517e-27], ␣

↪ dtype=float32)

15.4 Training

We use ELBO equation for training:

𝑙 = −E𝑧∼𝑞𝜙(𝑧|𝑥𝑖) [log 𝑝𝜃(𝑥𝑖|𝑧)] + KL [(𝑞𝜙(𝑧|𝑥))||𝑃 (𝑧)]

where 𝑃(𝑧) is the standard normal distribution and we approximate expectations using a single sample from the encoder.
We need to expand the KL-divergence term to implement. Both 𝑃(𝑧) and 𝑞𝜃(𝑧|𝑥) are normal. You can look-up the
KL-divergence between two normal distributions:

𝐾𝐿(𝑞, 𝑝) = log
𝜎𝑝
𝜎𝑞

+ 𝜎2
𝑞 + (𝜇𝑞 − 𝜇𝑝)2

2𝜎2𝑝
− 1

2 (15.11)

we can simplify because 𝑃(𝑧) is standard normal (𝜎 = 1, 𝜇 = 0)

KL [(𝑞𝜃(𝑧|𝑥𝑖))||𝑃 (𝑧)] = − log𝜎𝑖 + 𝜎2
𝑖

2 + 𝜇2
𝑖

2 − 1
2 (15.12)

where 𝜇𝑖, 𝜎𝑖 are the output from 𝑞𝜙(𝑧|𝑥𝑖)

@jax.jit
def loss(x, theta, phi, rng_key):

"""VAE Loss"""
# reconstruction loss
sampled_z_params = encoder(x, theta)
# reparameterization trick
# we use standard normal sample and multiply by parameters
# to ensure derivatives correctly propogate to encoder
sampled_z = (

jax.random.normal(rng_key, shape=(latent_dim,)) * sampled_z_params[:, 1]
+ sampled_z_params[:, 0]

)
# log of prob
rloss = -jnp.log(decoder(sampled_z, phi) @ x.T + 1e-8)
# LK loss
klloss = (

-0.5
- jnp.log(sampled_z_params[:, 1])
+ 0.5 * sampled_z_params[:, 0] ** 2
+ 0.5 * sampled_z_params[:, 1] ** 2

)
# combined
return jnp.array([rloss, jnp.mean(klloss)])

(continues on next page)
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# test it out
loss(class_data[0], theta, phi, jax.random.PRNGKey(0))

DeviceArray([18.420681, 4.439429], dtype=float32)

Our loss works! Now we need to make it batched so we can train in batches. Luckily this is easy with vmap.

batched_loss = jax.vmap(loss, in_axes=(0, None, None, None), out_axes=0)
batched_decoder = jax.vmap(decoder, in_axes=(0, None), out_axes=0)
batched_encoder = jax.vmap(encoder, in_axes=(0, None), out_axes=0)

# test batched loss
batched_loss(class_data[:4], theta, phi, jax.random.PRNGKey(0))

DeviceArray([[18.420681 , 4.439429 ],
[18.420681 , 32.165703 ],
[ 0.1743061, 73.976494 ],
[18.420681 , 4.439429 ]], dtype=float32)

We’ll make our gradient take the average over the batch

grad = jax.grad(
lambda x, theta, phi, rng_key: jnp.mean(batched_loss(x, theta, phi, rng_key)),
(1, 2),

)
fast_grad = jax.jit(grad)
fast_loss = jax.jit(batched_loss)

Alright, great! An important detail we’ve skipped so far is that when using jax to generate random numbers, we must
step our random number generator forward. You can do that using jax.random.split. Otherwise, you’ll get the
same random numbers at each draw.
We’re going to use a jax optimizer here. This is to simplify parameter updates. We have a lot of parameters and they
are nested, which will be complex for treating with python for loops.

batch_size = 32
epochs = 16

key = jax.random.PRNGKey(0)
opt_init, opt_update, get_params = optimizers.adam(step_size=1e-1)
theta0 = init_theta(input_dim, hidden_dim, latent_dim)
phi0 = init_phi(input_dim, hidden_dim, latent_dim)
opt_state = opt_init((theta0, phi0))
losses = []
for e in range(epochs):

for bi, i in enumerate(range(0, len(data), batch_size)):
# make a batch into shape B x 1
batch = class_data[i : (i + batch_size)]
# udpate random number key
key, subkey = jax.random.split(key)
# get current parameter values from optimizer
theta, phi = get_params(opt_state)
last_state = opt_state

(continues on next page)
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# compute gradient and update
grad = fast_grad(batch, theta, phi, key)
opt_state = opt_update(bi, grad, opt_state)
lvalue = jnp.mean(fast_loss(batch, theta, phi, subkey), axis=0)
losses.append(lvalue)

plt.plot([l[0] for l in losses], label="Reconstruction")
plt.plot([l[1] for l in losses], label="KL")
plt.plot([l[1] + l[0] for l in losses], label="ELBO")
plt.legend()
plt.ylim(-5, 5)
plt.xlabel("epoch")
plt.ylabel("loss")
plt.show()

15.4.1 Evaluating the VAE

Remember our goal with the VAE is to reproduce 𝑃(𝑥). We can sample from our VAE using the chosen 𝑃(𝑧) and our
decoder. Let’s compare that distribution with our training distribution.

zs = np.random.normal(size=(1024, 1))
sampled_x = batched_decoder(zs, phi)
fig, axs = plt.subplots(ncols=2, figsize=(8, 4))
axs[0].set_title("Training Data")
axs[0].bar(np.arange(nbins), height=np.sum(class_data, axis=0))
axs[0].set_xlabel("Class Index")
axs[0].set_ylabel("Frequency")
axs[1].set_title("VAE Samples")
axs[1].bar(np.arange(nbins), height=np.sum(sampled_x, axis=0))
axs[1].set_xlabel("Class Index")

(continues on next page)
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plt.tight_layout()
plt.show()

It appears we have succeeded! There were two more goals of the VAE model: making the encoder give output similar to
𝑃(𝑧) and be able to reconstruct. These goals are often opposed and they represent the two terms in the loss: reconstruction
and KL-divergence. Let’s examine the KL-divergence term, which causes the encoder to give output similar to a standard
normal. We’ll sample from our training data in histogram look at the resulting average mean and std dev.

d = batched_encoder(class_data, theta)
print("Average mu = ", np.mean(d[..., 0]), "Average std dev = ", np.mean(d[..., 1]))

Average mu = 0.0003880005 Average std dev = 0.9998034

Wow! Very close to a standard normal. So our model satisfied the match between the decoder and the 𝑃(𝑧). The last
thing to check is reconstruction. These are distributions, so I’ll only look at the maximum 𝑧 value to do the reconstruction.

plt.plot(decoder(encoder(class_data[2], theta)[0:1, 0], phi), label="P(x)")
plt.axvline(np.argmax(class_data[2]), color="C1", label="x")
plt.legend()
plt.show()
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The reconstruction is not great, it puts a lot of probability mass on other points. In fact, the reconstruction seems to not
use the encoder’s information at all – it looks like 𝑃(𝑥). The reason for this is that our KL-divergence term dominates.
It has a very good fit.

15.5 Re-balancing VAE Reconstruction and KL-Divergence

Often we desire more reconstruction at the cost of making the latent space less normal. This can be done by adding a
term that adjusts the balance between the reconstruction loss and the KL-divergence. You would choose to do this if you
want to use the latent space for something and are not just interested in creating a model ̂𝑃 (𝑥). Here is the modified
ELBO equation for training:

𝑙 = −E𝑧∼𝑞𝜙(𝑧|𝑥𝑖) [log 𝑝𝜃(𝑥𝑖|𝑧)] + 𝛽 ⋅ KL [(𝑞𝜙(𝑧|𝑥))||𝑃 (𝑧)]

where 𝛽 > 1 emphasizes the encoder distribution matching chosen latent distribution (standard normal) and 𝛽 < 1
emphasizes reconstruction accuracy.

def modified_loss(x, theta, phi, rng_key, beta):
"""This loss allows you to vary which term is more important
with beta. Beta = 0 - all reconstruction, beta = 1 - ELBO"""
bl = batched_loss(x, theta, phi, rng_key)
l = bl @ jnp.array([1.0, beta])
return jnp.mean(l)

new_grad = jax.grad(modified_loss, (1, 2))
fast_grad = jax.jit(new_grad)

# note we used a lower step size for this loss
# and more epochs
opt_init, opt_update, get_params = optimizers.adam(step_size=5e-2)
epochs = 32
theta0 = init_theta(input_dim, hidden_dim, latent_dim)
phi0 = init_phi(input_dim, hidden_dim, latent_dim)

(continues on next page)
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opt_state = opt_init((theta0, phi0))
beta = 0.2
losses = []
for e in range(epochs):

for bi, i in enumerate(range(0, len(data), batch_size)):
# make a batch into shape B x 1
batch = class_data[i : (i + batch_size)]
# udpate random number key
key, subkey = jax.random.split(key)
# get current parameter values from optimizer
theta, phi = get_params(opt_state)
last_state = opt_state
# compute gradient and update
grad = fast_grad(batch, theta, phi, key, beta)
opt_state = opt_update(bi, grad, opt_state)
lvalue = jnp.mean(fast_loss(batch, theta, phi, subkey), axis=0)
losses.append(lvalue)

plt.plot([l[0] for l in losses], label="Reconstruction")
plt.plot([l[1] for l in losses], label="KL")
plt.plot([l[1] + l[0] for l in losses], label="ELBO")
plt.legend()
plt.ylim(-5, 5)
plt.xlabel("epoch")
plt.ylabel("loss")
plt.show()

You can see the error is higher, but let’s see how it did at our three metrics.

zs = np.random.normal(size=(1024, 1))
sampled_x = batched_decoder(zs, phi)
fig, axs = plt.subplots(ncols=2, figsize=(8, 4))
axs[0].set_title("Training Data")

(continues on next page)
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axs[0].bar(np.arange(nbins), height=np.sum(class_data, axis=0))
axs[0].set_xlabel("Class Index")
axs[0].set_ylabel("Frequency")
axs[1].set_title("VAE Samples")
axs[1].bar(np.arange(nbins), height=np.sum(sampled_x, axis=0))
axs[1].set_xlabel("Class Index")
plt.tight_layout()
plt.show()

A little bit worse on 𝑃(𝑥), but overall not bad. What about our goal, the reconstruction?

plt.plot(decoder(encoder(class_data[4], theta)[0:1, 0], phi), label="P(x)")
plt.axvline(np.argmax(class_data[4]), color="C1", label="x")
plt.legend()
plt.show()
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What about our encoder’s agreement with a standard normal?

d = batched_encoder(class_data, theta)
print("Average mu = ", np.mean(d[..., 0]), "Average std dev = ", np.mean(d[..., 1]))

Average mu = 0.13320982 Average std dev = 0.08895968

The standard deviation is much smaller! So we squeezed our latent space a little at the cost of better reconstruction.

15.5.1 Disentangling 𝛽-VAE

You can adjust 𝛽 the opposite direction, to value matching the prior Gaussian distribution more strongly. This can better
condition the encoder so that each of the latent dimensions are truly independent. This can be important if you want to
disengatngle your input features to arrive at an orthogonal projection. This of course comes at the loss of reconstruction
accuracy, but can bemore important if you’re interested in the latent space rather than generating new samples [MRST19].

15.6 Regression VAE

We’ll now work with continuous features 𝑥. We need to make a few key changes. The encoder will remain the same,
but the decoder now must output a 𝑝𝜃(𝑥|𝑧) that gives a probability to all possible 𝑥 values. Above, we only had a finite
number of classes but now any 𝑥 is possible. As we did for the encoder, we’ll assume that 𝑝𝜃(𝑥|𝑧) should be normal and
we’ll output the parameters of the normal distribution from our network. This requires an update to the reconstruction
loss to be a log of a normal, but otherwise things will be identical.
One of the mistakes I always make is that the log-likelihood for a normal distribution with a single observation cannot
have unknown standard deviation. Our new normal distribution parameters for the decoder will have a single observation
for a single 𝑥 in training. If you make the standard deviation trainable, it will just pick infinity as the standard deviation
since that will for sure capture the point and you only have one point. Thus, I’ll make the decoder standard deviation be a
hyperparameter fixed at 0.1. We don’t see this issue with the encoder, which also outputs a normal distribution, because
we training the encoder with the KL-divergence term and not likelihood of observations (reconstruction loss).

latent_dim = 1
hidden_dim = 16
input_dim = 1

# make encoder parameters
theta = init_theta(input_dim, hidden_dim, latent_dim)
# test it
encoder(data[0:1], theta)

DeviceArray([[-0.48632216, 0.6864413 ]], dtype=float32)

def decoder(z, phi):
"""decoder takes as input the latant variable z and gives out probability of x.
Decoder outputes parameters for a normal distribution
"""
w1, w2, w3, b1, b2, b3 = phi
hz = jax.nn.relu(w1 @ z + b1)
hz = jax.nn.relu(w2 @ hz + b2)
out = w3 @ hz + b3

(continues on next page)
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# slice out stddeviation and make it positive
reshaped = out.reshape((-1, 2))
# we slice with ':' to keep rank same
# std = jax.nn.softplus(reshaped[:,1:])
std = jnp.ones_like(reshaped[:, 1:]) * 0.1
mu = reshaped[:, 0:1]
return jnp.concatenate((mu, std), axis=1)

def init_phi(input_dim, hidden_units, latent_dim):
"""Create inital phi parameters"""
w1 = random_vec(size=(hidden_units, latent_dim))
b1 = np.zeros(hidden_units)
w2 = random_vec(size=(hidden_units, hidden_units))
b2 = np.zeros(hidden_units)
w3 = random_vec(size=(input_dim * 2, hidden_units))
b3 = np.zeros(input_dim * 2)
return [w1, w2, w3, b1, b2, b3]

# test it out
phi = init_phi(input_dim, hidden_dim, latent_dim)
decoder(np.array([1.2] * latent_dim), phi)

DeviceArray([[8.568987, 0.1 ]], dtype=float32)

@jax.jit
def loss(x, theta, phi, rng_key):

"""VAE Loss"""
# reconstruction loss
sampled_z_params = encoder(x, theta)
# reparameterization trick
# we use standard normal sample and multiply by parameters
# to ensure derivatives correctly propogate to encoder
sampled_z = (

jax.random.normal(rng_key, shape=(latent_dim,)) * sampled_z_params[:, 1]
+ sampled_z_params[:, 0]

)
# log of normal dist
out_params = decoder(sampled_z, phi)
rloss = (

-jnp.log(jnp.sqrt(2 * np.pi) * out_params[:, 1] + 1e-10)
+ (x - out_params[:, 0]) ** 2 / out_params[:, 1] ** 2 / 2

)
klloss = (

-0.5
- jnp.log(sampled_z_params[:, 1])
+ 0.5 * sampled_z_params[:, 0] ** 2
+ 0.5 * sampled_z_params[:, 1] ** 2

)
# combined
return jnp.array([jnp.mean(rloss), jnp.mean(klloss)])

# test it out

(continues on next page)
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loss(data[0:1], theta, phi, jax.random.PRNGKey(0))

# update compiled functions
batched_loss = jax.vmap(loss, in_axes=(0, None, None, None), out_axes=0)
batched_decoder = jax.vmap(decoder, in_axes=(0, None), out_axes=0)
batched_encoder = jax.vmap(encoder, in_axes=(0, None), out_axes=0)
grad = jax.grad(

lambda x, theta, phi, rng_key: jnp.mean(batched_loss(x, theta, phi, rng_key)),
(1, 2),

)
fast_grad = jax.jit(grad)
fast_loss = jax.jit(batched_loss)

batch_size = 32
epochs = 64

key = jax.random.PRNGKey(0)
opt_init, opt_update, get_params = optimizers.adam(step_size=1e-2)
theta0 = init_theta(input_dim, hidden_dim, latent_dim)
phi0 = init_phi(input_dim, hidden_dim, latent_dim)
opt_state = opt_init((theta0, phi0))
losses = []
for e in range(epochs):

for bi, i in enumerate(range(0, len(data), batch_size)):
# make a batch into shape B x 1
batch = data[i : (i + batch_size)].reshape(-1, 1)
# udpate random number key
key, subkey = jax.random.split(key)
# get current parameter values from optimizer
theta, phi = get_params(opt_state)
last_state = opt_state
# compute gradient and update
grad = fast_grad(batch, theta, phi, key)
opt_state = opt_update(bi, grad, opt_state)
lvalue = jnp.mean(fast_loss(batch, theta, phi, subkey), axis=0)
losses.append(lvalue)

plt.plot([l[0] for l in losses], label="Reconstruction")
plt.plot([l[1] for l in losses], label="KL")
plt.plot([l[1] + l[0] for l in losses], label="ELBO")
plt.legend()
plt.ylim(-5, 20)
plt.xlabel("epoch")
plt.ylabel("loss")
plt.show()
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This model still has training to be done, but hopefully you get the idea for working with continuous numbers! We can
examine the final result below. Note that I must sample from the output parameters to compare with the real training
data.

bins = 64
zs = np.random.normal(size=(1024, 1))
sampled_x_params = batched_decoder(zs, phi)
fig, axs = plt.subplots(ncols=2, figsize=(8, 4))
axs[0].set_title("Training Data")
_, bins, _ = axs[0].hist(data, bins=bins)
axs[0].set_xlabel("x")
axs[0].set_ylabel("Frequency")
axs[1].set_title("VAE Samples")
# Now we have to sample from output paramters!!
samples = []
for s in sampled_x_params:

samples.append(np.random.normal(scale=s[:, 1], loc=s[:, 0], size=(8)))
samples = np.array(samples).flatten()
# make them use same bins
axs[1].hist(samples, bins=bins)
axs[1].set_xlabel("x")
plt.tight_layout()
plt.show()
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The distribution is alright, not great. Comparing reconstruction is a little different because we only compare the mean of
the predicted 𝑃(𝑥). We’ll plot our predicted 𝜇 from the decoder against the real 𝑥 values.

mus = batched_decoder(batched_encoder(data.reshape(-1, 1), theta)[:, :, 0], phi)[
:, 0, 0

]

plt.plot(data, mus, ".")
plt.plot(data, data, "-", zorder=-1, color="gray")
plt.xlabel("x")
plt.ylabel("$\mu$")
plt.show()

The reconstruction is actually quite good! There is some odd behavior near the top, but otherwise quite reasonable. Finally
check how well we did with getting our latent space to be standard normal.
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d = batched_encoder(data.reshape(-1, 1), theta)
print("Average mu = ", np.mean(d[..., 0]), "Average std dev = ", np.mean(d[..., 1]))

Average mu = 0.5099522 Average std dev = 0.41120714

Surprisingly poor. This gets at one of the issues with VAEs: sometimes your KL will dominate and you have poor
reconstruction and other times reconstruction will dominate. It just depends on the variance of your features, dimensions,
and hyperparameters. You’ll often want to explicitly balance those terms to better agree with your goals for constructing
the VAE.

15.7 Bead-Spring Polymer VAE

Now we’ll move on to a more realistic system. We’ll use a bead-spring polymer as shown in the short trajectory snippet
below.
This polymer has each bead (atom) joined by a harmonic bond, a harmonic angle between each three, and a Lennard-
Jones interaction potential. Knowing these items will not be necessary for the example. We’ll construct a VAE that can
compress the trajectory to some latent space and generate new conformations.
To begin, we’ll use the lessons learned from Input Data & Equivariances about how to align points from a trajectory. This
will then serve as our training data. The space of our problem will be 12 2D vectors. Our system need not be permutation
invariant, so we can flatten these vectors into a 24 dimensional input. The code belows loads and aligns the trajectory

urllib.request.urlretrieve(
"https://github.com/whitead/dmol-book/raw/master/data/long_paths.npz",
"long_paths.npz",

)
paths = np.load("long_paths.npz")["arr"]
# transform to be rot/trans invariant
data = align_principle(center_com(paths))
cmap = plt.get_cmap("cool")
for i in range(0, data.shape[0], 16):

plt.plot(data[i, :, 0], data[i, :, 1], "-", alpha=0.1, color="C2")
plt.title("All Frames")
plt.xticks([])
plt.yticks([])
plt.show()
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Before training, let’s examine some of the marginals of the data. Marginals mean we’ve transformed (by integration)
our probability distribution to be a function of only 1-2 variables so that we can plot nicely. We’ll look at the pairwise
distance between points.

fig, axs = plt.subplots(ncols=4, squeeze=True, figsize=(16, 4))
for i, j in enumerate(range(1, 9, 2)):

axs[i].set_title(f"Dist between 0-{j}")
sns.distplot(np.linalg.norm(data[:, 0] - data[:, j], axis=1), ax=axs[i])

plt.tight_layout()

These look a little like the chi distribution with two degrees of freedom. Notice that the support (x-axis) changes between
them though. We’ll keep an eye on these when we evaluate the efficacy of our VAE.

15.7.1 VAE Model

We’ll build the VAE like above. I will make two changes. I will use JAX’s random number generator and I will make
the number of layers variable. The code is hidden below, but you can expand to see the details. We’ll be starting with 4
layers total (3 hidden) with a hidden layer dimension of 256. Another detail is that we flatten the input/output since the
order is preserved and thus we do not worry about separating the x,y dimension out.
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15.7.2 Loss

The loss function is similar to above, but I will not even bother with the Gaussian outputs. You can see the only change
is that we drop the output Gaussian standard deviation from the loss, which remember was not trainable anyway.

@jax.jit
def loss(x, theta, phi, rng_key):

"""VAE Loss"""
# reconstruction loss
sampled_z_params = encoder(x, phi)
# reparameterization trick
# we use standard normal sample and multiply by parameters
# to ensure derivatives correctly propogate to encoder
sampled_z = (

jax.random.normal(rng_key, shape=(latent_dim,)) * sampled_z_params[:, 1]
+ sampled_z_params[:, 0]

)
# MSE now instead
xp = decoder(sampled_z, theta)
rloss = jnp.sum((xp - x) ** 2)
# LK loss
klloss = (

-0.5
- jnp.log(sampled_z_params[:, 1] + 1e-8)
+ 0.5 * sampled_z_params[:, 0] ** 2
+ 0.5 * sampled_z_params[:, 1] ** 2

)
# combined
return jnp.array([rloss, jnp.mean(klloss)])

# update compiled functions
batched_loss = jax.vmap(loss, in_axes=(0, None, None, None), out_axes=0)
batched_decoder = jax.vmap(decoder, in_axes=(0, None), out_axes=0)
batched_encoder = jax.vmap(encoder, in_axes=(0, None), out_axes=0)
grad = jax.grad(modified_loss, (1, 2))
fast_grad = jax.jit(grad)
fast_loss = jax.jit(batched_loss)

15.7.3 Training

Finally comes the training. The only changes to this code are to flatten our input data and shuffle to prevent the each batch
from having similar conformations.

batch_size = 32
epochs = 250
key = jax.random.PRNGKey(0)

flat_data = data.reshape(-1, input_dim)
# scramble it
flat_data = jax.random.shuffle(key, flat_data)

opt_init, opt_update, get_params = optimizers.adam(step_size=1e-2)
theta0, key = init_theta(input_dim, hidden_units, latent_dim, num_layers, key)

(continues on next page)
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phi0, key = init_phi(input_dim, hidden_units, latent_dim, num_layers, key)
opt_state = opt_init((theta0, phi0))
losses = []
# KL/Reconstruction balance
beta = 0.01
for e in range(epochs):

for bi, i in enumerate(range(0, len(flat_data), batch_size)):
# make a batch into shape B x 1
batch = flat_data[i : (i + batch_size)].reshape(-1, input_dim)
# udpate random number key
key, subkey = jax.random.split(key)
# get current parameter values from optimizer
theta, phi = get_params(opt_state)
last_state = opt_state
# compute gradient and update
grad = fast_grad(batch, theta, phi, key, beta)
opt_state = opt_update(bi, grad, opt_state)

# use large batch for tracking progress
lvalue = jnp.mean(fast_loss(flat_data[:100], theta, phi, subkey), axis=0)
losses.append(lvalue)

plt.plot([l[0] for l in losses], label="Reconstruction")
plt.plot([l[1] for l in losses], label="KL")
plt.plot([l[1] + l[0] for l in losses], label="ELBO")
plt.legend()
plt.ylim(0, 20)
plt.xlabel("epoch")
plt.ylabel("loss")
plt.show()

As usual, this model is undertrained. A latent space of 2, which we chose for plotting convenience, is also probably a little
too compressed. Let’s sample a few conformation and see how they look.
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sampled_data = decoder(jax.random.normal(key, shape=[latent_dim]), theta).reshape(-1,␣
↪2)

plt.plot(sampled_data[:, 0], sampled_data[:, 1], "-o", alpha=1)
plt.xticks([])
plt.yticks([])
plt.show()

These look reasonable compared with the trajectory video showing the training conformations.

15.8 Using VAE on a Trajectory

There are three main things to do with a VAE on a trajectory. The first is to go from a trajectory in the feature dimension
to the latent dimension. This can simplify analysis of dynamics or act as a reaction coordinate for free energy methods.
The second is to generate new conformations. This could be used to fill-in under sampling or perhaps extrapolate to new
regions of latent space. You can also use the VAE to examine marginals that are perhaps under-sampled. Finally, you can
do optimization on the latent space. For example, you could try to find the most compact structure. We’ll examine these
examples but there are many other things you could examine. For a more complete model example with attention and
3D coordinates, see Winter et al. [WNoeC21]. You can find applications of VAEs on trajectories for molecular design
[SMS+20], coarse-graining [WGomezB19], and identifying rare-events [RBWT18].

15.8.1 Latent Trajectory

Let’s start by computing a latent trajctory. I’m going to load a shorter trajectory which has the frames closer together in
time.

urllib.request.urlretrieve(
"https://github.com/whitead/dmol-book/raw/master/data/paths.npz", "paths.npz"

)
paths = np.load("paths.npz")["arr"]
short_data = align_principle(center_com(paths))

# get latent params
# throw away standard deviation

(continues on next page)
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(continued from previous page)

latent_traj = batched_encoder(short_data.reshape(-1, input_dim), phi)[:, 0]
plt.plot(latent_traj[:, 0], latent_traj[:, 1], "-o", markersize=5, alpha=0.5)
plt.show()

You can see that the trajectory is relatively continuous, except for a few wide jumps. We’ll see below that this is because
the alignment process can have big jumps as our principle axis rapidly moves when the points rearrange. Let’s compare
the video and the z-path side-by-side. You can find the code for this movie on the github repo.
You can see the quick change is due to our alignment quickly changing. This is why aligning on the principle axis isn’t
always perfect: your axis can flip 90 degrees because the internal points change the moment of inertia enough to change.

15.8.2 Generate New Samples

Let’s see how our samples look.

fig, axs = plt.subplots(ncols=2, figsize=(12, 4))
sampled_data = batched_decoder(

np.random.normal(size=(data.shape[0], latent_dim)), theta
).reshape(data.shape[0], -1, 2)
for i in range(0, data.shape[0]):

axs[0].plot(data[i, :, 0], data[i, :, 1], "-", alpha=0.1, color="C1")
axs[1].plot(

sampled_data[i, :, 0], sampled_data[i, :, 1], "-", alpha=0.1, color="C1"
)

axs[0].set_title("Training")
axs[1].set_title("Generated")
for i in range(2):

axs[i].set_xticks([])
axs[i].set_yticks([])

plt.show()
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The samples are not perfect, but we’re close. Let’s examine the marginals.

fig, axs = plt.subplots(ncols=4, squeeze=True, figsize=(16, 4))
for i, j in enumerate(range(1, 9, 2)):

axs[i].set_title(f"Dist between 0-{j}")
sns.distplot(np.linalg.norm(data[:, 0] - data[:, j], axis=1), ax=axs[i])
sns.distplot(

np.linalg.norm(sampled_data[:, 0] - sampled_data[:, j], axis=1),
ax=axs[i],
hist=False,

)
plt.tight_layout()

You can see that there are some issues here as well. Remember that our latent space is quite small: 2D. So we should not
be that surprised that we’re losing information from our 24D input space.

15.8.3 Optimization on Latent Space

Finally, let us examine how we can optimize in the latent space. Let’s say I want to find the most compact structure. We’ll
define our loss function as the radius of gyration and take its derivative with respect to 𝑧. Recall the definition of radius
of gyration is

𝑅𝑔 = 1
𝑁 ∑

𝑖
𝑟2

𝑖 (15.13)

where 𝑟𝑖 is distance to center of mass. Our generated samples are, by definition, centered at the origin though so we do
not need to worry about center of mass. We want to take derivatives in 𝑧, but need samples in 𝑥 to compute radius of
gyration. We use the decoder to get an 𝑥 and can propagate derivatives through it, because it is a differentiable neural
network.
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def rg_loss(z):
x = decoder(z, theta).reshape(-1, 2)
rg = jnp.sum(x**2)
return jnp.sqrt(rg)

rg_grad = jax.jit(jax.grad(rg_loss))

Now we will find the 𝑧 that minimizes the radius of gyration by using gradient descent with the derivative.

z = jax.random.normal(key, shape=[latent_dim])
losses = []
eta = 1e-2
for i in range(100):

losses.append(rg_loss(z))
g = rg_grad(z)
z -= eta * g

plt.plot(losses)
plt.xlabel("Iterations")
plt.ylabel("$R_g$")
plt.show()

We have a 𝑧 with a very low radius of gyration. How good is it? Well, we can also see what was the lowest radius of
gyration observed structure in our trajectory. We compare them below.

# get min from training
train_rgmin = np.argmin(np.sum(data**2, axis=(1, 2)))
# use new z
opt_rgmin = decoder(z, theta).reshape(-1, 2)
plt.plot(

data[train_rgmin, :, 0], data[train_rgmin, :, 1], "o-", label="Training", alpha=0.
↪8

)
plt.plot(opt_rgmin[:, 0], opt_rgmin[:, 1], "o-", label="Optimized", alpha=0.8)

(continues on next page)
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(continued from previous page)

plt.xticks([])
plt.yticks([])
plt.legend()
plt.show()

What is remarkable about this is that the optimized one has no overlaps and still reasonable bond-lengths. It is also more
compact than the lowest radius of gyration found in the training example.

15.9 Relevant Videos

15.9.1 Using VAE for Coarse-Grained Molecular Simulation

15.9.2 Using VAE for Molecular Graph Generation

15.9.3 Review of Molecular Graph Generative Models (including VAE)

15.10 Chapter Summary

• A variational autoencoder is a generative deep learning model capable of unsupervised learning. It is capable of of
generating new data points not seen in training.

• A VAE is a set of two trained conditional probability distributions that operate on examples from the data 𝑥 and
the latent space 𝑧. The encoder goes from data to latent and the decoder goes from latent to data.

• The loss function is the log likelihood that we observed the training point 𝑥𝑖.
• Taking the log allows us to sum/average over data to aggregate multiple points.
• The VAE can be used for both discrete or continuous features.
• The goal with VAE is to reproduce the probability distribution of 𝑥. Comparing the distribution over 𝑧 and that of

𝑥 allows us to evaluate how well the VAE operates.
• A bead-spring polymer VAE example shows how VAEs operate on a trajectory.
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CHAPTER

SIXTEEN

NORMALIZING FLOWS

The VAE was our first example of a generative model that is capable of sampling from 𝑃(𝑥). The VAE has two dis-
advantages though. The first that you cannot numerically evaluate 𝑃(𝑥), the probability of a single point. The second
disadvantage is that training the VAE is difficult, especially because you’re assuming the latent space should be normal.
Generative adversarial networks (GANs) are similar to VAEs and have the same two disadvantages.
A normalizing flow is similar to a VAE in that we try to build up 𝑃(𝑥) by starting from a simple known distribution
𝑃(𝑧). We use functions, like the decoder from a VAE, to go from 𝑥 to 𝑧. However, we make sure that the functions we
choose keep the probability mass normalized (∑ 𝑃(𝑥) = 1) and can be used forward (to sample from x) and backward
(to compute 𝑃(𝑥)). We call these functions bijectors because they are bijective (1 to 1, onto). An example of a bijector
is an element-wise cosine 𝑦𝑖 = cos𝑥𝑖 (assuming 𝑥𝑖 is between 0 and 𝜋) and non-bijective function would be a reduction
𝑦 = ∑𝑖 𝑥𝑖. Any function which changes the number of elements is automatically not bijective. A consequence of using
only bijectors in constructing our normalizing flow is that the size of the latent space must be equal to the size of the
feature space. Remember the VAE used a smaller latent space than the feature space.

Audience & Objectives
This chapter builds on Variational Autoencoder and assumes the same background of probability theory. This chapter is
an introduction to the key ideas, but is not fully developed yet. Some knowledge of vector calculus (Jacobians) is assumed
as well. After completing it, you should be able to

• Understand the trade-offs between a VAE, GAN, and normalizing flow.
• Identify a bijector and construct a bijector chain
• Construct a normalizing flow using common bijectors types and train it
• Sample from a normalizing flow and compute sample probabilities

You can find a recent review of normalizing flows here [KPB20] and here[PNR+19]. Although generating images and
sound is the most popular application of normalizing flows, some of their biggest scientific impact has been on more
efficient sampling from posteriors or likelihoods and other complex probability distributions [PSM19]. You find details
on how to do normalizing flows on categorical (discrete) data in Hoogeboom et al. [HNJ+21].
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16.1 Flow Equation

Recall for the VAE decoder, we had an explicit formula for 𝑝(𝑥|𝑧). This allowed us to compute 𝑝(𝑥) = ∫ 𝑑𝑧𝑝(𝑥|𝑧)𝑝(𝑧)
which is the quantity of interest. The VAE decoder is a conditional probability density function. In the normalizing
flow, we do not use probability density functions. We use bijective functions. So we cannot just compute an integral to
change variables. We can use the change of variable formula. Consider our normalizing flow to be defined by our bijector
𝑥 = 𝑓(𝑧), its inverse 𝑧 = 𝑔(𝑥), and the starting probability distribution 𝑃𝑧(𝑧). Then the formula for probability of 𝑥 is

𝑃(𝑥) = 𝑃𝑧 (𝑔(𝑥)) ∣det [J𝑔]∣ (16.1)

where the term on the right is the absolute value of the determinant of the Jacobian of 𝑔. Jacobians are matrices that
describe how infinitesimal changes in each domain dimension change each range dimension. This term corrects for the
volume change of the distribution. For example, if 𝑓(𝑧) = 2𝑧, then 𝑔(𝑥) = 𝑥/2, and the Jacobian determinant is 1/2.
The intuition is that we are stretching out 𝑧 by 2, so we need to account for the increase in volume to keep the probability
normalized. You can read more about the change of variable formula for probability distributions here

16.2 Bijectors

A bijector is a function that is injective (1 to 1) and surjective (onto). An equivalent way to view a bijective function is if
it has an inverse. For example, a sum reduction has no inverse and is thus not bijective. ∑[1, 0] = 1 and ∑[−1, 2] = 1.
Multiplying by a matrix which has an inverse is bijective. 𝑦 = 𝑥2 is not bijective, since 𝑦 = 4 has two solutions.
Remember that we must compute the determinant of the bijector Jacobian. If the Jacobian is dense (all output elements
depend on all input elements), computing this quantity will be 𝑂 (|𝑥|30) where |𝑥|0 is the number of dimensions of 𝑥
because a determinant scales by 𝑂(𝑛3). This would make computing normalizing flows impractical in high-dimensions.
However, in practice we restrict ourselves to bijectors that have easy to calculate Jacobians. For example, if the bijector
is 𝑥𝑖 = cos 𝑧𝑖 then the Jacobian will be diagonal. Typically, the trick that is done is to make the Jacobian triangular.
Then 𝑥0 only depends on 𝑧0, 𝑧1 depends on 𝑧0, 𝑍1, and 𝑥2 depends on 𝑧0, 𝑧1, 𝑧2, etc. The matrix determinant is then
computed in linear time with respect to the number of dimensions.

16.2.1 Bijector Chains

Just like in deep neural networks, multiple bijectors are chained together to increase how complex of the final fit distri-
bution ̂𝑃 (𝑥) can be. The change of variable equation can be repeatedly applied:

𝑃(𝑥) = 𝑃𝑧 [𝑔1 (𝑔0(𝑥))] ∣det [J𝑔1
]∣ ∣det [J𝑔0

]∣ (16.2)

where we would compute 𝑥 with 𝑓0 (𝑓1(𝑧)). One critical point is that you should also include a permute bijector that
swaps the order of dimensions. Since the bijectors typically have triangular Jacobians, certain output dimensions will
depend on many input dimensions and others will only depend on a single one. By applying a permutation, you allow each
dimension to influence each other.

16.3 Training

At this point, you may be wondering how you could possibly train a normalizing flow. The trainable parameters appear
in the bijectors. They have adjustable parameters. The loss equation is quite simple: the negative log-likelihood (negative
to make it minimization). Explicitly:

𝑙 = − log𝑃𝑧 [𝑔1 (𝑔0(𝑥))] − ∑
𝑖
log ∣det [J𝑔𝑖

]∣ (16.3)

where 𝑥 is the training point and when you take the gradient of the loss, it is with respect to the parameters of the bijectors.
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16.4 Common Bijectors

The choice of bijector functions is a fast changing area. I will thus only mention a few. You can of course use any
bijective function or matrix, but these become inefficient at high-dimension due to the Jacobian calculation. One class of
efficient bijectors are autoregressive bijectors. These have triangular Jacobians because each output dimension can only
depend on the dimensions with a lower index. There are two variants: masked autoregressive flows (MAF)[PPM17] and
inverse autoregressive flows (IAF) [KSJ+16]. MAFs are efficient at training and computing probabilities, but are slow
for sampling from 𝑃(𝑥). IAFs are slow at training and computing probabilities but efficient for sampling. Wavenets
combine the advantages of both [KLS+18]. I’ll mention one other common bijector which is not autoregressive: real non-
volume preserving (RealNVPs) [DSDB16]. RealNVPs are less expressive than IAFs/MAFs, meaning they have trouble
replicating complex distributions, but are efficient at all three tasks: training, sampling, and computing probabilities.
Another interesting variant is the Glow bijector,which is able to expand the rank of the normalizing flow, for example
going from a matrix to an RGB image [DAS19]. What are the equations for all these bijectors? Most are variants of
standard neural network layers but with special rules about which outputs depend on which inputs.

Warning: Remember to add permute bijectors between autoregressive bijectors to ensure the dependence between
dimensions is well-mixed.

16.5 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages.

Tip: To install packages, execute this code in a new cell.

!pip install dmol-book

If you find install problems, you can get the latest working versions of packages used in this book here

The hidden code below imports the tensorflow probability package and other necessary packages. Note that the tensorflow
probability package (tfp) is further broken into distributions (tfd) and bijectors (tfb).

import tensorflow as tf
import tensorflow_probability as tfp
import matplotlib.pyplot as plt
import sklearn.datasets as datasets
import numpy as np
import dmol

np.random.seed(0)
tf.random.set_seed(0)

tfd = tfp.distributions
tfb = tfp.bijectors
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16.6 Moon Example

We’ll start with a basic 2D example to learn the two moons distribution with a normalizing flow. Two moons is a common
example dataset that is hard to cluster and model as a probability distribution.
When doing normalizing flows you have two options to implement them. You can do all the Jacobians, inverses, and
likelihood calculations analytically and implement them in a normal ML framework like Jax, PyTorch, or TensorFlow.
This is actually most common. The second option is to utilize a probability library that knows how to use bijectors
and distributions. The packages for that are PYMC, TensorFlow Probability (which has a non-tensorflow JAX version
confusingly), and Pyro (Pytorch). We’ll use TensorFlow Probability for this work.

16.6.1 Generating Data

In the code below, I set-up my imports and sample points which will be used for training. Remember, this code has
nothing to do with normalizing flows – it’s just to generate data.

moon_n = 10000
ndim = 2
data, _ = datasets.make_moons(moon_n, noise=0.05)

plt.plot(data[:, 0], data[:, 1], ".", alpha=0.8)

[<matplotlib.lines.Line2D at 0x7fc91db35880>]

286 Chapter 16. Normalizing Flows



Deep Learning for Molecules and Materials

16.6.2 Z Distribution

Our Z distribution should always be as simple as possible. I’ll create a 2D Gaussian with unit variance, no covariance, and
centered at 0. I’ll be using the tensorflow probability package for this example. The key new concept is that we organize
our tensors that were sampled from a probability distribution in a specific way. We, by convention, make the first axes
be the sample shape, the second axes be the batch shape, and the final axes be the event shape. The sample shape is the
number of times we sampled from our distribution. It is a shape and not a single dimension because occasionally you’ll
want to organize your samples into some shape. The batch shape is a result of possibly multiple distributions batched
together. For example, you might have 2 Gaussians, instead of a single 2D Gaussian. Finally, the event shape is the
shape of a single sample from the distribution. This is overly complicated for our example, but you should be able to read
information about the distribution now by understanding this nomenclature. You can find a tutorial on these shapes here
and more tutorials on tensorflow probability here.

zdist = tfd.MultivariateNormalDiag(loc=[0.0] * ndim)
zdist

<tfp.distributions.MultivariateNormalDiag 'MultivariateNormalDiag' batch_shape=[]␣
↪event_shape=[2] dtype=float32>

With our new understanding of shapes, you can see that this distribution has no batch_shape because there is only one
set of parameters and the event_shape is [2] because it’s a 2D Gaussian. Let’s now sample from this distribution
and view it

zsamples = zdist.sample(moon_n)
plt.plot(zsamples[:, 0], zsamples[:, 1], ".", alpha=0.8)
plt.xlim(-4, 4)
plt.ylim(-4, 4)
plt.gca().set_aspect("equal")

As expected, our starting distribution looks nothing like are target distribution. Let’s demonstrate a bijector now. We’ll
implement the following bijector:

𝑥 = ⃗𝑧 × (1, 0.5)𝑇 + (0.5, 0.25)

This is bijective because the operations are element-wise and invertible. Rather than just write this out using operations
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like @ or *, we’ll use the built-in bijectors from TensorFlow probability. The reason we do this is that they have their
inverses and Jacobian determinants already defined. We first create a bijector that scales by [1, 0.5] and one then one
that shifts by [0.5,0.25].

shift_bij = tfb.Shift([0.5, 0.25])
scale_bij = tfb.Scale([1, 0.5])
# make composite via function convolution
b = shift_bij(scale_bij)

To now apply the change of variable formula, we create a transformed distribution. What is important about this choice
is that we can compute likelihoods, probabilities, and sample from it.

td = tfd.TransformedDistribution(zdist, bijector=b)
td

<tfp.distributions.TransformedDistribution 'chain_of_shift_of_
↪scaleMultivariateNormalDiag' batch_shape=[] event_shape=[2] dtype=float32>

zsamples = td.sample(moon_n)
plt.plot(zsamples[:, 0], zsamples[:, 1], ".", alpha=0.8)
plt.xlim(-4, 4)
plt.ylim(-4, 4)
plt.gca().set_aspect("equal")

We show above the sampling from this new distribution. We can also plot it’s probability, which is impossible for a
VAE-like model!

# make points for grid
zpoints = np.linspace(-4, 4, 150)
(

z1,
z2,

) = np.meshgrid(zpoints, zpoints)
zgrid = np.concatenate((z1.reshape(-1, 1), z2.reshape(-1, 1)), axis=1)

(continues on next page)
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(continued from previous page)

# compute P(x)
p = np.exp(td.log_prob(zgrid))
fig = plt.figure()
# plot and set axes limits
plt.imshow(p.reshape(z1.shape), aspect="equal", extent=[-4, 4, -4, 4])
plt.show()

16.6.3 The Normalizing Flow

Now we will build bijectors that are expressive enough to capture the moon distribution. I will use 3 sets of a MAF and
permutation for 6 total bijectors. MAF’s have dense neural network layers in them, so I will also set the usual parameters
for a neural network: dimension of hidden layer and activation.

num_layers = 3
my_bijects = []
# loop over desired bijectors and put into list
for i in range(num_layers):

# Syntax to make a MAF
anet = tfb.AutoregressiveNetwork(

params=ndim, hidden_units=[128, 128], activation="relu"
)
ab = tfb.MaskedAutoregressiveFlow(anet)
# Add bijector to list
my_bijects.append(ab)
# Now permuate (!important!)
permute = tfb.Permute([1, 0])
my_bijects.append(permute)

# put all bijectors into one "chain bijector"
# that looks like one
big_bijector = tfb.Chain(my_bijects)
# make transformed dist
td = tfd.TransformedDistribution(zdist, bijector=big_bijector)
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At this point, we have not actually trained but we can still view our distribution.

zpoints = np.linspace(-4, 4, 150)
(

z1,
z2,

) = np.meshgrid(zpoints, zpoints)
zgrid = np.concatenate((z1.reshape(-1, 1), z2.reshape(-1, 1)), axis=1)
p = np.exp(td.log_prob(zgrid))
fig = plt.figure()
plt.imshow(p.reshape(z1.shape), aspect="equal", extent=[-4, 4, -4, 4])
plt.show()

You can already see that the distribution looks more complex than a Gaussian.

16.6.4 Training

To train, we’ll use TensorFlow Keras, which just handles computing derivatives and the optimizer.

# declare the feature dimension
x = tf.keras.Input(shape=(2,), dtype=tf.float32)
# create a "placeholder" function
# that will be model output
log_prob = td.log_prob(x)
# use input (feature) and output (log prob)
# to make model
model = tf.keras.Model(x, log_prob)
# define a loss
def neg_loglik(yhat, log_prob):

# losses always take in label, prediction
# in keras. We do not have labels,
# but we still need to accept the arg
# to comply with Keras format
return -log_prob

(continues on next page)
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(continued from previous page)

# now we prepare model for training
model.compile(optimizer=tf.optimizers.Adam(1e-3), loss=neg_loglik)

One detail is that we have to create fake labels (zeros) because Keras expects there to always be training labels. Thus our
loss we defined above (negative log-likelihood) takes in the labels but does nothing with them.

result = model.fit(x=data, y=np.zeros(moon_n), epochs=100, verbose=0)
plt.plot(result.history["loss"])
plt.show()

Training looks reasonable. Let’s now see our distribution.

zpoints = np.linspace(-2.5, 2.5, 200)
(

z1,
z2,

) = np.meshgrid(zpoints, zpoints)
zgrid = np.concatenate((z1.reshape(-1, 1), z2.reshape(-1, 1)), axis=1)
p = np.exp(td.log_prob(zgrid))
fig = plt.figure()
plt.imshow(

p.reshape(z1.shape), aspect="equal", origin="lower", extent=[-2.5, 2.5, -2.5, 2.5]
)
plt.show()
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Wow! We now can compute the probability of any point in this distribution. You can see there are some oddities that
could be fixed with further training. One issue that cannot be overcome is the connection between the two curves – it is
not possible to get fully disconnected densities. This is because of our requirement that the bijectors are invertible and
volume preserving – you can only squeeze volume so far but cannot completely disconnect. Some work has been done on
addressing this issue by adding sampling to the flow and this gives more expressive normalizing flows [WKohlerNoe20].
Finally, we’ll sample from our model just to show that indeed it is generative.

zsamples = td.sample(moon_n)
plt.plot(zsamples[:, 0], zsamples[:, 1], ".", alpha=0.2, markeredgewidth=0.0)
plt.xlim(-2.5, 2.5)
plt.ylim(-2.5, 2.5)
plt.gca().set_aspect("equal")
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16.7 Relevant Videos

16.7.1 Normalizing Flow for Molecular Conformation

16.8 Chapter Summary

• A normalizing flow builds up a probability distribution of 𝑥 by starting from a known distribution on 𝑧. Bijective
functions are used to go from 𝑧 to 𝑥.

• Bijectors are functions that keep the probability mass normalized and are used to go forward and backward (because
they have well-defined inverses).

• To find the probability distribution of 𝑥 we use the change of variable formula, which requires a function inverse
and Jacobian.

• The bijector function has trainable parameters, which can be trained using a negative log-likelihood function.
• Multiple bijectors can be chained together, but typically must include a permute bijector to swap the order of
dimensions.

16.9 Cited References
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CHAPTER

SEVENTEEN

PREDICTING DFT ENERGIES WITH GNNS

QM9 is a dataset of 134,000 molecules consisting of 9 heavy atoms drawn from the elements C, H, O, N, F[RDRVL14].
The features are the xyz coordinates (X) and elements ( ⃗𝑒) of the molecule. The coordinates are determined from
B3LYP/6-31G(2df,p) level DFT geometry optimization. There are multiple labels (see table below), but we’ll be in-
terested specifically in the energy of formation (Enthalpy at 298.15 K). The goal in this chapter is to regress a graph
neural network to predict the energy of formation given the coordinates of a molecule. We will build upon ideas in the
following chapters:

1. Regression & Model Assessment

2. Graph Neural Networks
3. Input Data & Equivariances

QM9 is one of the most popular dataset for machine learning and deep learning since it came out in 2014. The first papers
could achieve about 10 kcal/mol on this regression problem and now are down to ~1 kcal/mol and lower. Any model on
this dataset must be translation, rotation, and permutation invariant.

17.1 Label Description

Index Name Units Description
0 index - Consecutive, 1-based integer identifier of molecule
1 A GHz Rotational constant A
2 B GHz Rotational constant B
3 C GHz Rotational constant C
4 mu Debye Dipole moment
5 alpha Bohr^3 Isotropic polarizability
6 homo Hartree Energy of Highest occupied molecular orbital (HOMO)
7 lumo Hartree Energy of Lowest unoccupied molecular orbital (LUMO)
8 gap Hartree Gap, difference between LUMO and HOMO
9 r2 Bohr^2 Electronic spatial extent
10 zpve Hartree Zero point vibrational energy
11 U0 Hartree Internal energy at 0 K
12 U Hartree Internal energy at 298.15 K
13 H Hartree Enthalpy at 298.15 K
14 G Hartree Free energy at 298.15 K
15 Cv cal/(mol K) Heat capacity at 298.15 K
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17.2 Data

I have written some helper code in the fetch_data.py file. It downloads the data and converts into a format easily
used in Python. The data returned from this function is broken into the features X and ⃗𝑒. X is an 𝑁 × 4 matrix of atom
positions + partial charge of the atom. ⃗𝑒 is vector of atomic numbers for each atom in the molecule. Remember to slice
the specific label you want from the label vector.

17.3 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages.

Tip: To install packages, execute this code in a new cell.

!pip install dmol-book

If you find install problems, you can get the latest working versions of packages used in this book here

import tensorflow as tf
import numpy as np
from fetch_data import qm9_parse, qm9_fetch
import dmol

Let’s load the data. This step will take a few minutes as it is downloaded and processed.

qm9_records = qm9_fetch()
data = qm9_parse(qm9_records)

data is an iterable containing the data for the 133k molecules. Let’s examine the first one.

for d in data:
print(d)
break

((<tf.Tensor: shape=(5,), dtype=int64, numpy=array([6, 1, 1, 1, 1])>, <tf.Tensor:␣
↪shape=(5, 4), dtype=float32, numpy=

array([[-1.2698136e-02, 1.0858041e+00, 8.0009960e-03, -5.3568900e-01],
[ 2.1504159e-03, -6.0313176e-03, 1.9761203e-03, 1.3392100e-01],
[ 1.0117308e+00, 1.4637512e+00, 2.7657481e-04, 1.3392200e-01],
[-5.4081506e-01, 1.4475266e+00, -8.7664372e-01, 1.3392299e-01],
[-5.2381361e-01, 1.4379326e+00, 9.0639728e-01, 1.3392299e-01]],

dtype=float32)>), <tf.Tensor: shape=(16,), dtype=float32, numpy=
array([ 1.0000000e+00, 1.5771181e+02, 1.5770998e+02, 1.5770699e+02,

0.0000000e+00, 1.3210000e+01, -3.8769999e-01, 1.1710000e-01,
5.0480002e-01, 3.5364101e+01, 4.4748999e-02, -4.0478931e+01,

-4.0476063e+01, -4.0475117e+01, -4.0498596e+01, 6.4689999e+00],
dtype=float32)>)

These are Tensorflow Tensors. They can be converted to numpy arrays via x.numpy(). The first item is the element
vector 6,1,1,1,1. Do you recognize the elements? It’s C, H, H, H, H. The positions come next. Note that there is an
extra column containing the atom partial charges, which we will not use as a feature. Finally, the last tensor is the label
vector.
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Now we will do some processing of the data to get into a more usable format. Let’s convert to numpy arrays, remove the
partial charges, and convert the elements into one-hot vectors.

def convert_record(d):
# break up record
(e, x), y = d
#
e = e.numpy()
x = x.numpy()
r = x[:, :3]
# make ohc size larger
# so use same node feature
# shape later
ohc = np.zeros((len(e), 16))
ohc[np.arange(len(e)), e - 1] = 1
return (ohc, r), y.numpy()[13]

for d in data:
(e, x), y = convert_record(d)
print("Element one hots\n", e)
print("Coordinates\n", x)
print("Label:", y)
break

Element one hots
[[0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

Coordinates
[[-1.2698136e-02 1.0858041e+00 8.0009960e-03]
[ 2.1504159e-03 -6.0313176e-03 1.9761203e-03]
[ 1.0117308e+00 1.4637512e+00 2.7657481e-04]
[-5.4081506e-01 1.4475266e+00 -8.7664372e-01]
[-5.2381361e-01 1.4379326e+00 9.0639728e-01]]

Label: -40.475117

17.4 Baseline Model

Before we get too far into modeling, let’s see what a simple model can do for accuracy. This will help establish a baseline
model which any more sophisticated implementation should exceed in accuracy. You can make many choices for this,
but I’ll just make a linear regression based on number of atom types.

import jax.numpy as jnp
import jax.experimental.optimizers as optimizers
import jax
import warnings
import matplotlib.pyplot as plt

warnings.filterwarnings("ignore")

(continues on next page)

17.4. Baseline Model 299



Deep Learning for Molecules and Materials

(continued from previous page)

@jax.jit
def baseline_model(nodes, w, b):

# get sum of each element type
atom_count = jnp.sum(nodes, axis=0)
yhat = atom_count @ w + b
return yhat

def baseline_loss(nodes, y, w, b):
return (baseline_model(nodes, w, b) - y) ** 2

baseline_loss_grad = jax.grad(baseline_loss, (2, 3))
w = np.ones(16)
b = 0.0

We’ve set-up our simple regression model. One complexity is that we cannot batch the molecules like normal because
each molecule contains different shaped tensors.

# we'll just train on 5,000 and use 1,000 for test
# shuffle
shuffled_data = data.shuffle(7000)
test_set = shuffled_data.take(1000)
valid_set = shuffled_data.skip(1000).take(1000)
train_set = shuffled_data.skip(2000).take(5000)

The labels in this data are quite large, so we’re going to make a transform on them to make our learning rates and training
going more smoothly.

ys = [convert_record(d)[1] for d in train_set]
train_ym = np.mean(ys)
train_ys = np.std(ys)
print("Mean = ", train_ym, "Std =", train_ys)

Mean = -360.42856 Std = 44.142815

Now we’ll just use this transform when training: 𝑦𝑠 = 𝑦−𝜇𝑦
𝜎𝑦

and then our predictions will be transformed by ̂𝑦 =
̂𝑓(𝑒, 𝑥) ⋅ 𝜎𝑦 + 𝜇𝑦. This just helps standardize our range of outputs.

def transform_label(y):
return (y - train_ym) / train_ys

def transform_prediction(y):
return y * train_ys + train_ym

epochs = 16
eta = 1e-3
baseline_val_loss = [0.0 for _ in range(epochs)]
for epoch in range(epochs):

for d in train_set:
(e, x), y_raw = convert_record(d)
y = transform_label(y_raw)

(continues on next page)
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(continued from previous page)

grad_est = baseline_loss_grad(e, y, w, b)
# update regression weights
w -= eta * grad_est[0]
b -= eta * grad_est[1]

# compute validation loss
for v in valid_set:

(e, x), y_raw = convert_record(v)
y = transform_label(y_raw)
# convert SE to RMSE
baseline_val_loss[epoch] += baseline_loss(e, y, w, b)

baseline_val_loss[epoch] = jnp.sqrt(baseline_val_loss[epoch] / 1000)
eta *= 0.9

plt.plot(baseline_val_loss)
plt.xlabel("Epoch")
plt.ylabel("Val Loss")
plt.show()

WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0␣
↪and rerun for more info.)

This is poor performance, but it gives us a baseline value of what we can expect. One unusual detail I did in this training
was to slowly reduce the learning rate. This is because our features and labels are all in different magnitudes. Our weights
need to move far to get into the right order of magnitude and then need to fine-tune a little. Thus, we start at high learning
rate and decrease.

ys = []
yhats = []
for v in valid_set:

(e, x), y = convert_record(v)
ys.append(y)
yhat_raw = baseline_model(e, w, b)
yhat = transform_prediction(yhat_raw)
yhats.append(yhat)

(continues on next page)
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(continued from previous page)

plt.plot(ys, ys, "-")
plt.plot(ys, yhats, ".")
plt.xlabel("Energy")
plt.ylabel("Predicted Energy")
plt.show()

You can see that the broad trends about molecule size capture a lot of variance, but more work needs to be done.

17.5 Example GNN Model

We now can work with this data to build a model. Let’s build a simple model that can model energy and obeys the
invariances required of the problem. We will use a graph neural network (GNN) because it obeys permutation invariance.
We will create a graph from the coordinates/element vector by joining all atoms to all other atoms and using their inverse
pairwise distance as the edge weight. The choice of pairwise distance gives us translation and rotation invariance. The
choice of inverse distance means that atoms which are far away naturally have low edge weights.
I will now define our model using the Battaglia equations [BHB+18]. As opposed to most examples we’ve seen in class,
I will use the graph level feature vector �⃗� which will ultimately be our estimate of energy. The edge update will only
consider the sender and the edge weight with trainable parameters:

⃗𝑒′
𝑘 = 𝜙𝑒 ( ⃗𝑒𝑘, ⃗𝑣𝑟𝑘, ⃗𝑣𝑠𝑘, �⃗�) = 𝜎 ( ⃗𝑣𝑠𝑘�⃗�𝑒𝑒𝑘 + ⃗𝑏𝑒) (17.1)

where the input edge 𝑒𝑘 will be a single number (inverse pairwise distance) and �⃗�𝑒 is a trainable bias vector. We will use
a sum aggregation for edges (not shown). 𝜎 is a leaky ReLU. The leaky just prevents vanishing gradients, which I found
empirically to reduce performance here. The node update will be

⃗𝑣′
𝑖 = 𝜙𝑣 ( ̄𝑒′

𝑖, ⃗𝑣𝑖, �⃗�) = 𝜎 (W𝑣 ̄𝑒′
𝑖) + ⃗𝑣𝑖 (17.2)

The global node aggregation will also be a sum. Finally, we have our graph feature vector update:

�⃗�′ = 𝜙𝑢 ( ̄𝑒′ , ̄𝑣′ , �⃗�) = 𝜎 (W𝑢 ̄𝑣′) + �⃗� (17.3)
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To compute the final energy, we’ll use our regression equation:
̂𝐸 = �⃗� ⋅ �⃗� + 𝑏 (17.4)

One final detail is that we will pass on �⃗� and the nodes, but we will keep the edges the same at each GNN layer. Remember
this is an example model: there are many changes that could be made to the above. Also, it is not kernel learning which
is the favorite for this domain. Let’s implement it though and see if it works.

17.5.1 JAX Model Implementation

def x2e(x):
"""convert xyz coordinates to inverse pairwise distance"""
r2 = jnp.sum((x - x[:, jnp.newaxis, :]) ** 2, axis=-1)
e = jnp.where(r2 != 0, 1 / r2, 0.0)
return e

def gnn_layer(nodes, edges, features, we, web, wv, wu):
"""Implementation of the GNN"""
# make nodes be N x N so we can just multiply directly
# ek is now shaped N x N x features
ek = jax.nn.leaky_relu(

web
+ jnp.repeat(nodes[jnp.newaxis, ...], nodes.shape[0], axis=0)
@ we
* edges[..., jnp.newaxis]

)
# sum over neighbors to get N x features
ebar = jnp.sum(ek, axis=1)
# dense layer for new nodes to get N x features
new_nodes = jax.nn.leaky_relu(ebar @ wv) + nodes
# sum over nodes to get shape features
global_node_features = jnp.sum(new_nodes, axis=0)
# dense layer for new features
new_features = jax.nn.leaky_relu(global_node_features @ wu) + features
# just return features for ease of use
return new_nodes, edges, new_features

We have implemented the code to convert coordinates into inverse pairwise distance and the GNN equations above. Let’s
test them out.

graph_feature_len = 8
node_feature_len = 16
msg_feature_len = 16

# make our weights
def init_weights(g, n, m):

we = np.random.normal(size=(n, m), scale=1e-1)
wb = np.random.normal(size=(m), scale=1e-1)
wv = np.random.normal(size=(m, n), scale=1e-1)
wu = np.random.normal(size=(n, g), scale=1e-1)
return [we, wb, wv, wu]

# make a graph
nodes = e

(continues on next page)
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(continued from previous page)

edges = x2e(x)
features = jnp.zeros(graph_feature_len)

# eval
out = gnn_layer(

nodes,
edges,
features,
*init_weights(graph_feature_len, node_feature_len, msg_feature_len),

)
print("input feautres", features)
print("output features", out[2])

input feautres [0. 0. 0. 0. 0. 0. 0. 0.]
output features [-0.02791678 0.58952665 -0.02129295 -0.00340767 0.4783953 -0.

↪01959314
-0.00684738 -0.00327933]

Great! Our model can update the graph features. Now we need to convert this into callable and loss. We’ll stack two
GNN layers.

# get weights for both layers
w1 = init_weights(graph_feature_len, node_feature_len, msg_feature_len)
w2 = init_weights(graph_feature_len, node_feature_len, msg_feature_len)
w3 = np.random.normal(size=(graph_feature_len))
b = 0.0

@jax.jit
def model(nodes, coords, w1, w2, w3, b):

f0 = jnp.zeros(graph_feature_len)
e0 = x2e(coords)
n0 = nodes
n1, e1, f1 = gnn_layer(n0, e0, f0, *w1)
n2, e2, f2 = gnn_layer(n1, e1, f1, *w2)
yhat = f2 @ w3 + b
return yhat

def loss(nodes, coords, y, w1, w2, w3, b):
return (model(nodes, coords, w1, w2, w3, b) - y) ** 2

loss_grad = jax.grad(loss, (3, 4, 5, 6))

You could pad the molecules to all be the same shape. This is a common strategy. We will skip this though for
simplicity.

One small change we’ve made below is that we scale the learning rate for the GNN to be 1/10 of the rate for the regression
parameters. This is because the GNN parameters need to vary slower based on trial and error.
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eta = 1e-3
val_loss = [0.0 for _ in range(epochs)]
for epoch in range(epochs):

for d in train_set:
(e, x), y_raw = convert_record(d)
y = transform_label(y_raw)
grad = loss_grad(e, x, y, w1, w2, w3, b)
# update regression weights
w3 -= eta * grad[2]
b -= eta * grad[3]
# update GNN weights
for i, w in [(0, w1), (1, w2)]:

for j in range(len(w)):
w[j] -= eta * grad[i][j] / 10

# compute validation loss
for v in valid_set:

(e, x), y_raw = convert_record(v)
y = transform_label(y_raw)
# convert SE to RMSE
val_loss[epoch] += loss(e, x, y, w1, w2, w3, b)

val_loss[epoch] = jnp.sqrt(val_loss[epoch] / 1000)
eta *= 0.9

plt.plot(baseline_val_loss, label="baseline")
plt.plot(val_loss, label="GNN")
plt.legend()
plt.xlabel("Epoch")
plt.ylabel("Val Loss")
plt.show()

This is a large dataset and we’re under training, but hopefully you get the principles of this process! Finally, we’ll examine
our parity plot.

ys = []
yhats = []

(continues on next page)
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(continued from previous page)

for v in valid_set:
(e, x), y = convert_record(v)
ys.append(y)
yhat_raw = model(e, x, w1, w2, w3, b)
yhats.append(transform_prediction(yhat_raw))

plt.plot(ys, ys, "-")
plt.plot(ys, yhats, ".")
plt.xlabel("Energy")
plt.ylabel("Predicted Energy")
plt.show()

The clusters are molecule types/sizes. You can see we’re starting to get the correct trend within the clusters, but a lot of
work needs to be done to move some of them. Additional learning required!

17.6 Relevant Videos About Modeling QM9

17.7 Cited References
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CHAPTER

EIGHTEEN

GENERATIVE RNN IN BROWSER

This chapter builds on the model and information presented in Deep Learning on Sequences. We’ll see how to develop,
train, and deploy a model to a website. The goal is to develop a model that can propose new molecules. A “molecule” is
a broad term, so we’ll restrict ourselves to molecules like those that might be used for a small molecule drug. These are
called drug-like. There is an existing database for this task called ZINC (recursive acronym: ZINC is not commercial). The
ZINC database contains 750 million molecules (as SMILES) that can be purchased directly. By training with ZINC,
you are restricting your training distribution to molecules that can be synthesized.[SI15]
750 million molecules is often enough. Instead of generating new molecules with a model, you can just sample from
ZINC and be assured that each molecule is purchasable. Sometimes that is not possible because we’re more interested
in building a representation (a vector for each molecule), rather than actually sampling like in self-supervised learning.
My recommendation in projects is to strongly consider just using ZINC directly if possible. We’ll continue on for our
approach, because wemay go on to use the RNN for “downstream tasks” like predicting solubility using the self-supervised
trained RNN.
You can see the final idea of what we’re trying to accomplish in this chapter at whitead.github.io/molecule-dream/. This
model was generated using our final code at the bottom.

18.1 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages.

Tip: To install packages, execute this code in a new cell.

!pip install dmol-book

If you find install problems, you can get the latest working versions of packages used in this book here

18.2 Approach 1: Token Sampling

At first, it may seem simple to generate new molecules. Any sequence of SELFIES is a valid molecule [KHaseN+20].
Let’s start by trying this approach –making random sequences. Recall that a sequence is an array of tokens, like characters
or words. In SELFIES, the tokens are very clear because they are enclosed by square brackets. For example,[C][C] is
a SELFIES sequence with two tokens.
We want to generate new molecules similar to ZINC remember, so we’ll start by extracting all unique tokens from that
database. To save everyone a little time, we’ll work with a subset of ZINC that has about 250,000 molecules that comes
from the SELFIES repo.
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import selfies as sf
import pandas as pd
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import rdkit, rdkit.Chem, rdkit.Chem.Draw
from dataclasses import dataclass
import dmol

data_url = "https://github.com/aspuru-guzik-group/selfies/raw/
↪16a489afa70882428bc194b2b24a2d33573f1651/examples/vae_example/datasets/dataJ_250k_
↪rndm_zinc_drugs_clean.txt"

pd_data = pd.read_csv(data_url)
print("Total data size", len(pd_data))

Total data size 249455

We now have our starting dataset. To extract the SELFIES tokens, we need to convert the dataset (which is in SMILES)
into SELFIES. This might take a while…

selfies_list = [sf.encoder(s) for s in pd_data.iloc[:, 0]]

Here’s what one of the examples look like:

print(selfies_list[0])

[C][C@@Hexpl][C][C][Branch2_1][Ring1][Ring2][N][C][=C][N][=C][C][Branch1_
↪1][Branch2_2][C][=N][N][=C][N][Ring1][Branch1_
↪1][C][=C][Ring1][N][C][C@@Hexpl][Branch1_1][C][C][C][Ring2][Ring1][Ring2]

Let’s extract now all the possible tokens and count them. I’ll initialize my list with the ‘[nop]’ token, which is the SELFIES
null token we’ll use later for padding.

selfies_symbol_counts = {"[nop]": 0}

def parse(s):
for si in s.split("[")[1:]:

token = "[" + si
if token in selfies_symbol_counts:

selfies_symbol_counts[token] += 1
else:

selfies_symbol_counts[token] = 0

[parse(s) for s in selfies_list]

# print out topic tokens
sorted_token_counts = list(sorted(selfies_symbol_counts.items(), key=lambda i: -i[1]))
for p in sorted_token_counts[:10]:

print(*p)
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[C] 3535514
[=C] 1122876
[Ring1] 857002
[Branch1_1] 621378
[Branch1_2] 523333
[N] 510053
[=O] 318168
[O] 279513
[Branch2_1] 202227
[Ring2] 176665

We’ll finish up parsing by creating a dictionary to go back from string to index and a list for our vocab.

vocab = list(selfies_symbol_counts.keys())
vocab_stoi = {o: i for o, i in zip(vocab, range(len(vocab)))}

def selfies2ints(s):
result = []
for si in s.split("[")[1:]:

result.append(vocab_stoi["[" + si])
return result

def ints2selfies(v):
return "".join([vocab[i] for i in v])

# test them out
s = selfies_list[0]
print("selfies:", s)
v = selfies2ints(s)
print("selfies2ints:", v)
so = ints2selfies(v)
print("ints2selfes:", so)
assert so == s

selfies: [C][C@@Hexpl][C][C][Branch2_1][Ring1][Ring2][N][C][=C][N][=C][C][Branch1_
↪1][Branch2_2][C][=N][N][=C][N][Ring1][Branch1_
↪1][C][=C][Ring1][N][C][C@@Hexpl][Branch1_1][C][C][C][Ring2][Ring1][Ring2]

selfies2ints: [1, 2, 1, 1, 3, 4, 5, 6, 1, 7, 6, 7, 1, 8, 9, 1, 10, 6, 7, 6, 4, 8,␣
↪1, 7, 4, 6, 1, 2, 8, 1, 1, 1, 5, 4, 5]

ints2selfes: [C][C@@Hexpl][C][C][Branch2_
↪1][Ring1][Ring2][N][C][=C][N][=C][C][Branch1_1][Branch2_
↪2][C][=N][N][=C][N][Ring1][Branch1_1][C][=C][Ring1][N][C][C@@Hexpl][Branch1_
↪1][C][C][C][Ring2][Ring1][Ring2]

Now we’ll try sampling directly from the tokens. I’m not very good at inferring if a SELFIES string is a reasonable
molecule, so we’ll render a few using rdkit.

def model1():
# pick random length
length = np.random.randint(1, 100)
seq = np.random.choice(len(vocab), size=length)
return seq
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def draw_examples(model, count=10):
examples = [ints2selfies(model()) for _ in range(9)]
examples_smiles = [sf.decoder(s) for s in examples]
from rdkit.Chem import rdDepictor

examples_mols = [rdkit.Chem.MolFromSmiles(s) for s in examples_smiles]
return rdkit.Chem.Draw.MolsToGridImage(

examples_mols, molsPerRow=3, subImgSize=(250, 250)
)

draw_examples(model1)

<IPython.core.display.SVG object>

As you can see, these molecules are a bit extreme – we see bizarre valences and highly unusual combinations of elements.
We can try to sample now according to the frequency of tokens we saw in the corpus (ZINC smiles).

# get sorted token counts to be order
# same as vocab
token_counts = [

x[1] for x in sorted(sorted_token_counts, key=lambda i: vocab_stoi[i[0]])
]
token_counts = np.array(token_counts)

def model2():
# pick random length
length = np.random.randint(1, 100)
seq = np.argmax(

np.random.multinomial(1, token_counts / np.sum(token_counts), size=length),
axis=-1,

)
return seq

# now draw
draw_examples(model2)

<IPython.core.display.SVG object>

These are much better! Still, they are very exotic – if they could even be synthesized they would probably explode if you
sneezed on them. The advantage of SELFIES over SMILES is that none of these were invalid. Just a bit unreasonable.
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18.3 Approach 2: Token RNN

Our next approach will be to use a recurrent neural network as we did in Deep Learning on Sequences. We will make one
major change. The RNN will be trained to predict a whole sequence instead of one value (like solubility). This training
process is called self-supervised. We create labels, from splitting up the training data, so it is not exactly unsupervised.
The way we implement self-supervised training with an RNN is that we feed it a sequence up to position 𝑖 − 1 and then
ask it to predict the sequence value at position 𝑖. Then at inference time, we feed its output at 𝑖 − 1 as the input to 𝑖.
There are a few tricks to make this efficient. The first is that if we split our data into all possible pairs of training labels
(sequence up to 𝑖 − 1) and labels (value at 𝑖), we’ll have 𝑁 × 𝐿 examples which in our case is about 100 million. To
treat this, we’ll consider the predicted label to be the whole sequence ⃗̂𝑦 and that will include each individual prediction
challenge. For example, predicting ̂𝑦 given 𝑥0, 𝑥1, 𝑥2 will be the value of ⃗̂𝑦 at index 3.
You’ll notice there is a bit of a length mismatch with this approach. What would ̂𝑦0 correspond to? You might say it is
the predicted label without any input features, but RNNs require an input to have an output. Instead, we’ll prefix every
sequence with the special [nop] token which means do nothing. Then ̂0will be the prediction given a [nop] token. We
just need to remember at inference time we need to always begin with the [nop] token to match the training conditions.
Let’s start by building our training set using the splitting process. I’m going to define all my hyperparameters in one place
as well, so I can easily view them. These hyperparameters are mostly first guesses built from previous experience with
GRUs for sequence modeling.

@dataclass
class Config:

vocab_size: int
example_number: int
batch_size: int
buffer_size: int
embedding_dim: int
rnn_units: int

config = Config(
vocab_size=len(vocab),
example_number=len(selfies_list),
batch_size=64,
buffer_size=10000,
embedding_dim=256,
rnn_units=128,

)

18.3.1 Data Construction

# now get sequences
encoded = [selfies2ints(s) for s in selfies_list]
# Keras pads with 0s - [nop] in our vocab
padded_seqs = tf.keras.preprocessing.sequence.pad_sequences(encoded, padding="post")

# Now build dataset
seqs_data = tf.data.Dataset.from_tensor_slices((padded_seqs,))

def split_input_target(sequence):
# remove last input (since no label exists)

(continues on next page)
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(continued from previous page)

# prefix with [nop]
input_text = tf.concat(([0], sequence[:-1]), 0)
target_text = sequence
return input_text, target_text

data = seqs_data.map(split_input_target)
data = (

data.shuffle(config.buffer_size)
.batch(config.batch_size, drop_remainder=True)
.prefetch(tf.data.experimental.AUTOTUNE)

)
# grab examples
for d in data:

example = d[0]
example_y = d[1]
break

18.3.2 Model Construction

Our model will be the same as Deep Learning on Sequences: an embedding, one RNN (GRU variant), and one dense
layer. The dense layer could be omitted if an even simpler model was desired. We do not add a softmax to the dense
layer because we’ll be working with logits instead of probability in training and inference. One change is that we specify
the return_sequences since we’re training across sequences. The other flags to tf.keras.layers.GRU are to
set-up for deploying the model to javascript, which we’ll see below.

x = tf.keras.Input(shape=(None,))
ex = tf.keras.layers.Embedding(

input_dim=config.vocab_size, output_dim=config.embedding_dim, mask_zero=True
)(x)
# reset_after - TFJS requires this as false
h = tf.keras.layers.GRU(

config.rnn_units, return_sequences=True, reset_after=False, stateful=False
)(ex)
yhat = tf.keras.layers.Dense(config.vocab_size)(h)
train_model = tf.keras.Model(inputs=x, outputs=yhat)

Now we’ll call it once to make sure it works and to enable Keras to set all the unknown dimensions.

yhat = train_model(example)
train_model.summary()

Model: "model"

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================
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input_1 (InputLayer) [(None, None)] 0

embedding (Embedding) (None, None, 256) 27648

gru (GRU) (None, None, 128) 147840

dense (Dense) (None, None, 108) 13932

=================================================================

Total params: 189,420

Trainable params: 189,420

Non-trainable params: 0

_________________________________________________________________

18.3.3 Training

Now we will train the model. We use a special loss function tf.losses.SparseCategoricalCrossentropy
that works on a sequence of logits for computing cross-entropy in the multi-class setting (multi-class because we have
multiple possible tokens). I will train for only 2 epochs to reduce the runtime of this notebook, but I’ve found ~4 is a
reasonable balance of time and loss.

loss = tf.losses.SparseCategoricalCrossentropy(from_logits=True)
train_model.compile(tf.optimizers.Adam(1e-2), loss=loss)
result = train_model.fit(data, epochs=2, verbose=0)
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18.3.4 Inference

In the inference setting, we need to feed the output from each step back into the model to generate the next token. RNNs
are defined by the input and their state vector (or state vectors for LSTM). To ensure our model is not forgetting about
the tokens it has seen so far, we could keep the state and last output token to use as input to the model. However, an easier
approach is to make the underlying model stateful. That means its state will be stored as a kind of internal weight and
we do not need to bother with passing around the state vector.
We’ll construct a second model that is stateful and make its weights equal to the one we trained. Another change is that
we do not need the model to output the whole sequence since we’re generating one token at a time.

x = tf.keras.Input(shape=(None,), batch_size=1)
ex = tf.keras.layers.Embedding(

input_dim=config.vocab_size, output_dim=config.embedding_dim, mask_zero=True
)(x)
h = tf.keras.layers.GRU(

config.rnn_units, return_sequences=False, reset_after=False, stateful=True
)(ex)
yhat = tf.keras.layers.Dense(config.vocab_size)(h)
inference_model = tf.keras.Model(inputs=x, outputs=yhat)

# now copy over weights
inference_model.set_weights(train_model.get_weights())

To try the model, remember we start with the [nop] token which is zero.

plt.figure(figsize=(10, 4))
x = np.array([0]).reshape(1, 1)
v = inference_model.predict(x, verbose=0)
plt.bar(x=np.arange(config.vocab_size), height=np.squeeze(v))
plt.xlabel("Token index")
plt.ylabel("Log odds")
plt.show()

This is the logit probability for each token. We need to sample from this to get our prediction for the first token. We’ll
sample it with an adjustable parameter called temperature. Temperature controls how close we are to sampling the
maximum. 𝑇 = 0 means we sampling the max only, 𝑇 = 1 means we sample according to the logits, and 𝑇 = ∞ means
we sample randomly.
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def sample_token(x, T=1):
return tf.random.categorical(x / T, 1)

t = sample_token(v)
print(t)

tf.Tensor([[22]], shape=(1, 1), dtype=int64)

Now to continue we feed back into the stateful model. Let’s wrap this into a function.

def sample_model(T=1):
length = np.random.randint(1, 100)
seq = []
x = tf.zeros((1, 1))
# reset stateful model
inference_model.reset_states()
for _ in range(length):

v = inference_model.predict(x, verbose=0)
x = sample_token(v, T)
seq.append(int(np.squeeze(x.numpy())))

return seq

We’ll draw the output for 𝑇 = 1

draw_examples(sample_model)

<IPython.core.display.SVG object>

These are better still! Now we can try adjusting the temperature to see more unusual or more common molecules
𝑇 = 0.5

draw_examples(lambda: sample_model(T=0.5))

<IPython.core.display.SVG object>

𝑇 = 100

draw_examples(lambda: sample_model(T=100))

<IPython.core.display.SVG object>

You can see that the 𝑇 = 0.5 case seems to works the best of the three.
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18.4 Model Deployment

Finally, to get the model into javascript as shown at Molecule Dream we can export using tensorflowjs. It is relatively
simple, but you may notice when you load the model into javascript that console errors may indicate you need to adjust
flags in model construction.

import tensorflowjs as tfjs

tfjs.converters.save_keras_model(inference_model, "tfjs_model")

WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to␣
↪be built. `model.compile_metrics` will be empty until you train or evaluate the␣
↪model.

I also like to save the config in case I need to know things like the vocab or dimension of the vectors. JSON files can be
easily loaded into javascript objects.

import json
from dataclasses import asdict

model_info = asdict(config)
model_info["stoi"] = vocab_stoi
model_info["vocab"] = vocab

with open("tfjs_model/config.json", "w") as f:
json.dump(model_info, f)

import * as tf from '@tensorflow/tfjs';
import config from 'tfjs_model/config.json;

const rnn_mod = {}

const loader = tf.loadLayersModel('/tfjs_model/model.json');
loader.then((model) => {

rnn_mod.model = (t) => {
return model.predict(t);

}
rnn_mod.resetStates = () => {

model.resetStates();
}

});

Next we need a few helper functions that we used for inference. These are sampling and for converting from integers to
the SELFIES tokens.

rnn_mod.sample = (x, seed, T = 0.1, k = 1) => {
return tf.multinomial(

tf.mul(tf.scalar(2.0), x), k, seed
);

}

rnn_mod.selfie2vec = (s) => {
const vec = tf.tensor(s.split('[').slice(1).map((e, i) => {

(continues on next page)
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(continued from previous page)

if (e)
parseInt(config.stoi['[' + e]);

}));
return vec;

}

rnn_mod.initVec = () => {
return tf.tensor([0]);

}

rnn_mod.vec2selfie = (v) => {
const out = v.array().then((x) => {

if (Array.isArray(x)) {
return x.map((e, i) => {

return config.vocab[parseInt(e)];
});

} else {
return [config.vocab[parseInt(x)]];

}
});

return out;
}

export default rnn_mod;

This code gives us a javascript module that can then be used for sampling from our trained model. See the Molecular
Dream repo for the complete code.

18.5 Cited References
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CHAPTER

NINETEEN

HYPERPARAMETER TUNING

Authors:
Mehrad Ansari

As you have learned so far, there are number of optimization algorithms to train deep learning models. Training a complex
deep learning model can take hours, days or even weeks. Therefore, random guesses for model’s hyperparameters might
not be very practical and some deeper knowledge is required. These hyperparameters include but are not limited to
learning rate, number of hidden layers, dropout rate, batch size and number of epochs to train for. Notably, not all these
hyperparameters contribute in the same way to the model’s performance, which makes finding the best configurations of
these variables in such high dimensional space a nontrivial challenge (searching is expensive!). In this chapter, we look at
different strategies to tackle this searching problem.

Audience & Objectives
This chapter builds on Standard Layers and Classification. After completing this chapter, you should be able to

• Distinguish between training and model design-related hyperparamters
• Understand the importance of validation data in hyperparameter tuning
• Understand how each hyperparameter can affect model’s performance

Hyperparameters can be categorized into two groups: those used for training and those related to model structure and
design.

19.1 Training Hyperparameters

19.1.1 Learning rate

Gradient descent algorithms multiply the gradient by a scalar known as learning rate to determine the next point in the
weights’ space. Learning rate is a hyperparameter that controls the step size to move in the direction of lower loss function,
with the goal of minimizing it. In most cases, learning rate is manually adjusted during model training. Large learning
rates (𝛼) make the model learn faster but at the same time it may cause us to miss the minimum loss function and only
reach the surrounding of it. In cases where the learning rate is too large, the optimizer overshoots the minimum and the
loss updates will lead to divergent behaviours. On the other hand, choosing lower 𝛼 values gives a better chance of finding
the local minima with the trade-off of needing larger number of epochs and more time.
Note that we can almost never plot the loss as a function of weight’s space (as shown in Fig. 19.1), and this makes finding
the reasonable 𝛼 tricky. With a proper constant 𝛼, the model can be trained to a passable yet still unsatisfactory accuracy,
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Fig. 19.1: Effect of learning rate on loss.

because the constant 𝛼 can be overlarge, especially in the last few epochs. Alternatively, 𝛼 can be adaptively adjusted in
response to the performance of the model. This is also known as learning rate decay schedule. Some commonly applied
decay schedules include linear (step), exponential, polynomial and cyclic. By starting at a larger learning rate, we achieve
the rarely discussed benefit of allowing our model to escape the local minima that overfits, and find a broader minimum
as learning rate decreases over the number of epochs. If you are using Keras, you can either define your own scheduler
or use any from tf.keras.optimizers.schedules and add it as a callback when you train your model. Some
other adaptive learning rate schedulers that might help with reducing tuning efforts can be found in [KDVK21, YLSZ20,
VMKS21].

19.1.2 Momentum

Another tweak that can help escaping the local minima is the addition of the history to the weight update. “The momen-
tum algorithm accumulates an exponentially decaying moving average of past gradients and continues to move in their
direction” [GBC17]. Simply speaking, this means that rather than using only the gradient of the current step to guide the
search in the weights’ space, momentum also accumulates the gradient of the past steps to determine which direction to
go to. Momentum has the effect of smoothing the optimization process, allowing for slower updates to continue in the
previous directions instead of oscillating or getting stuck. Momentum has a value greater than zero and less than one, but
common values used in practice range between 0.9 and 0.99. Note that momentum is rarely changed in deep learning as
a hyperparameter, as it does not really help with configuring the proper learning rate. Instead, it can increase the speed
of the optimization process by increasing the likelihood of obtaining a better set of weights in fewer training epochs.
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Fig. 19.2: Decay schedules on learning rate can possibly help escaping the local minima.
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19.1.3 Batch Size

The batch size is always a trade-off between computational efficiency and accuracy. By reducing the batch size, you are
essentially reducing the number of samples based on which loss is calculated at each training iteration. Considering model
evaluation metrics, smaller batch sizes generalize well on the unobserved data in validation and test set. But why do large
batch sizes result a poorer generalization? This thread on Stack Exchange has some great hypotheses:

• Gradient descent-based optimization makes linear approximation of the loss function, and this approximation will
not be the best for highly nonlinear loss functions, thus, having a smaller batch size helps.

• Large-batch training methods are shown to converge to sharp minimizers of the training and testing functions, and
that sharp minima results poorer generalization [KMN+16, HHS17, LKSJ20].

• Since smaller samples can have more variations from one another, they can add more noise to convergence. Thus,
by keeping the batch size small, we are more likely to escape the local minima and find a more broader one.

As mentioned in the previous section, decaying the learning rate is a common practice in training ML frameworks. But,
it has actually been shown that we can obtain the same benefits and learning curve by scaling up the batch size during
training instead [SKYL17].

19.2 Model Design-Related Hyperparameters

19.2.1 Number of hidden layers

The overall structure of neural networks are determined based on the number of hidden layers (𝑑). Before describing
this, let us talk about the traditional disagreement on how the total number of layers are counted. This disagreement
centers around whether or not the input layer is counted. There is an argument that suggests it should not be counted since
inputs are not active. We go by this convention, which is also recommended in [RM99]. A single-layer can only be used
to represent linearly separable functions, in very simple problems. On the other hand, deep learning models with more
layers are more likely to capture more complex features are obtain a relative higher accuracy. As a common sense, you
can keep adding layers until the test error does not improve anymore.

19.2.2 Number of nodes in each hidden layer

The number of nodes (𝑤) in each layer should be carefully considered to avoid overfitting and underfitting. Small (𝑤)
may result underfitting as the model lacks complexity. On the other hand, too many nodes (large 𝑤) can cause overfitting
and increase training time. Here are some rules-of-thumb that can be a good start for tuning the number of nodes:

1. 𝑤𝑖𝑛𝑝𝑢𝑡 < 𝑤 < 𝑤𝑜𝑢𝑡𝑝𝑢𝑡

2. 𝑤 = 2
3 𝑤𝑖𝑛𝑝𝑢𝑡 + 𝑤𝑜𝑢𝑡𝑝𝑢𝑡

3. 𝑤 < 2𝑤𝑜𝑢𝑡𝑝𝑢𝑡
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19.2.3 Regularization

Regularization is applied to counteract the additional model complexity that comes as a result of adding more nodes
in deep neural networks. The most common regularization methods (𝐿1 and 𝐿2) are explained in Regression & Model
Assessment. Hyperparameter 𝜆 determines the magnitude of the regularization term in the loss function. Too large 𝜆
pushes the weights closer to zero and oversimplifies the structure of the deep learning model, where as undersized 𝜆 is
not strong enough to reduce the weights. Thanks to its computational efficiency 𝐿2 regularization is more widely used,
however, 𝐿1 regularization prevails over 𝐿2 on sparse properties. A brief comparison between 𝐿1 and 𝐿2 are presented
in the table below.

𝐿1 𝐿2
Penalizes the sum of the absolute value of weights Penalizes the sum of square weights
Unable to learn complex patterns Able to learn complex data patterns
Robust to outliers Not robust to outliers
Built-in feature selection No feature selection
Multiple solution One solution
Sparse solution Nonsparse solution

19.3 Hyperparameter Optimization

Mathematically, hyperparameter optimization (HPO) is the process of finding the set of hyperparamters to either achieve
minimum loss or maximum accuracy of the objective model. The general philosophy is the same for all HPO algorithms:
determine which hyperparameters to tune and their corresponding search space, adjust them from coarse to fine and obtain
the optimal combination.
The state-of-the-art HPO algorithms are classified into two categories: search algorithms and trial schedulers. In general,
search algorithms are applied for sampling and trial schedulers deal with the early stopping methods for model evaluation.

19.3.1 Search Algorithms

Grid Search

As long as you have sufficient computational resources, grid search is a straightforward method for HPO. It performs an
exhaustive search on the hyperparameters sets defined by the user. Grid search is applicable for cases where we have
limited number of hyperparameters with limited search space.

Random Search

Random search is a more effective version of grid search but still computationally exhaustive. It performs a randomized
search over hyperparameters from certain distributions over possible parameter values. The searching process continues
until the desired accuracy is reached or unitl the predetermined computational budget is exhausted. Random search works
better than grid search considering two benefits: First, a budget can be assigned independently based on the distribution of
the search space, whereas in grid search the budget for each hyperparameter set is a fixed value. This makes random search
perform better than grid search, especially in search patterns where some hyperparameters are not uniformly distributed.
Secondly, a larger time consumption of random search quite certainly will lead to a larger probability finding the best
hyperparameter set (this is known as Monte Carlo techniques).
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Bayesian Optimization

Bayesian optimization (BO) is a sequential model-based optimization that aims at becoming less wrong with more data by
finding the global optimum by balancing exploration and exploitation that minimizes the number of trials. BO outperforms
random and grid search in two aspects: 1. There is no need to have some preliminary knowledge of the distribution of
hyperparameters. 2. Unlike random and grid search, the posterior probability is obtained based of a relevant search
space, meaning that the algorithm discards the hyperparameter ranges that will most likely not deliver promising solutions
according to the previous trials. 3. Another remarkable advantage is that BO is applicable to different settings, where the
derivative of the objective function is unknown or expensive to calculate, whether it is stochastic or discrete, or convex or
non-convex.
BO consists of two key ingredients: 1. A Bayesian probability surrogate model to model the expensive objective function.
A surrogate mother is a women who agrees to bear a child for another person, so in context, a surrogate function is a
less expensive approximation of the objective function. A popular surrogate model for BO are Gaussian processes (GPs).
2. An acquisition function that acts as a metric function to determine the next optimal sampling point. This is where BO
provides a balanced trade-off between exploitation and exploration. Exploitation means sampling where the surrogate
model predicts a high objective, given the current available solutions. Exploration means sampling at locations where the
prediction uncertainty is high. These both correspond to high acquisition function values, and the goal is to determine the
next sampling point by maximizing the acquisition function.

19.3.2 Trial Schedulers

HPO is a time-consuming process and in realistic scenarios, it is necessary to obtain the best hyperparameter with limited
available resources. When it comes to training the hyperparameters by hand, by experience we can narrow the search
space down, evaluate the model during training and decide whether to stop the training or keep going. An early stopping
strategy tries to mimic this behavior and maximize the computational resource budget for promising hyperparameter sets.

Median Stopping

Median stopping is a straightforward early termination policy that makes the stopping decision based on the average
primary metrics, such as accuracy or loss reported by previous runs. A trial 𝑋 is halted at step 𝑆 if the best objective
value by step 𝑆 is strictly worse than the median value of the running average of all completed trials objective values
reported at step 𝑆 [GSM+17].

Curve Fitting

Curve Fitting is another early stopping algorithm rule that predicts the final accuracy or loss using a performance curve
regressed from a set of completed or partially completed trials [DSH15]. A trial 𝑋 will be stopped at step 𝑆 if the
extrapolation of the learning curves is worse than the tolerant value of the optimal in the trial history. Unlike median
stopping, where we don’t have any hyperparameters, curve fitting is a model with parameters and it also requires a training
process.
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Successive Halving

Successive Halving (SHA) converts the hyperparameter optimization problem into a non-stochastic best-arm identification
and tries to allocate more resources only to those hyperparameter sets that are more promising [JT16]. In SHA, user
defines and fixed budget (𝐵) and a fixed number of trials (𝑛). The hyperparameter sets are uniformly queried for a
portion of the intial budget and the corresponding model performances are evaluated for all trials. The worst promising
half is dropped while the budget is doubled for the other half and this is done successively until one trial remains. One
drawback of SHA is how resources are allocated. There is a trade-off between the total budget (𝐵) and number of trials
(𝑛). If 𝑛 is too large, each trial may result in premature termination, whereas too small 𝑛 would not provide enough
optional choices.
Compared with Bayesian optimization, SHA is easier to understand and it is more computationally efficient as it evaluate
the intermediate model results and determines whether to terminate it or not.

HyperBand

HyperBand is an extension of SHA that tries to solve the resource allocation problem by considering several possible 𝑛
values and fixing 𝐵 [LJD+18].

19.4 Running This Notebook

Click the above to launch this page as an interactive Google Colab. See details below on installing packages, either on
your own environment or on Google Colab

Tip: To install packages, execute this code in a new cell

!pip install dmol-book

19.5 Hyperparameter Tuning

Now that we know more about different HPO techniques, we develop a deep learning model to predict hemolysis in
peptides and tune its hyperparameters. Hemolysis is defined as the disruption of erythrocyte membranes that decrease
the life span of red blood cells and causes the release of Hemoglobin. Identifying hemolytic antimicrobial is critical
to their applications as non-toxic and safe measurements against bacterial infections. However, distinguishing between
hemolytic and non-hemolytic peptides is complicated, as they primarily exert their activity at the charged surface of the
bacterial plasma membrane. Timmons and Hewage [TH20] differentiate between the two whether they are active at the
zwitterionic eukaryotic membrane, as well as the anionic prokaryotic membrane. The model for hemolytic prediction
is trained using data from the Database of Antimicrobial Activity and Structure of Peptides (DBAASP v3 [PAG+21]).
The activity is defined by extrapolating a measurement assuming a dose response curves to the point at which 50% of
red blood cells (RBC) are lysed. If the activity is below 100 𝜇𝑔

𝑚𝑙 , it is considered hemolytic. Each measurement is treated
independently, so sequences can appear multiple times. The training data contains 9,316 positive and negative sequences
of only L- and canonical amino acids.

urllib.request.urlretrieve(
"https://github.com/ur-whitelab/peptide-dashboard/raw/master/ml/data/hemo-

↪positive.npz",
"positive.npz",

(continues on next page)
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)
urllib.request.urlretrieve(

"https://github.com/ur-whitelab/peptide-dashboard/raw/master/ml/data/hemo-
↪negative.npz",

"negative.npz",
)
with np.load("positive.npz") as r:

pos_data = r[list(r.keys())[0]]
with np.load("negative.npz") as r:

neg_data = r[list(r.keys())[0]]

# create labels and stich it all into one
# tensor
labels = np.concatenate(

(
np.ones((pos_data.shape[0], 1), dtype=pos_data.dtype),
np.zeros((neg_data.shape[0], 1), dtype=pos_data.dtype),

),
axis=0,

)
features = np.concatenate((pos_data, neg_data), axis=0)
# we now need to shuffle before creating TF dataset
# so that our train/test/val splits are random
i = np.arange(len(labels))
np.random.shuffle(i)
labels = labels[i]
features = features[i]
full_data = tf.data.Dataset.from_tensor_slices((features, labels))

def build_model(reg=0.1, add_dropout=False):
model = tf.keras.Sequential()
# make embedding and indicate that 0 should be treated specially
model.add(

tf.keras.layers.Embedding(
input_dim=21, output_dim=16, mask_zero=True, input_length=pos_data.shape[-

↪1]
)

)

# now we move to convolutions and pooling
model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=5, activation="relu"))
model.add(tf.keras.layers.MaxPooling1D(pool_size=4))

model.add(
tf.keras.layers.Conv1D(

filters=16,
kernel_size=3,
activation="relu",

)
)
model.add(tf.keras.layers.MaxPooling1D(pool_size=2))

model.add(tf.keras.layers.Conv1D(filters=16, kernel_size=3, activation="relu"))
model.add(tf.keras.layers.MaxPooling1D(pool_size=2))

(continues on next page)
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# now we flatten to move to hidden dense layers.
# Flattening just removes all axes except 1 (and implicit batch is still in there␣

↪as always!)

model.add(tf.keras.layers.Flatten())
if add_dropout:

model.add(tf.keras.layers.Dropout(0.3))
model.add(

tf.keras.layers.Dense(
256, activation="relu", kernel_regularizer=tf.keras.regularizers.l2(reg)

)
)
if add_dropout:

model.add(tf.keras.layers.Dropout(0.3))
model.add(

tf.keras.layers.Dense(
64, activation="tanh", kernel_regularizer=tf.keras.regularizers.l2(reg)

)
)
if add_dropout:

model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Dense(1, activation="sigmoid"))
return model

model = build_model(reg=0, add_dropout=False)
# now split into val, test, train
N = pos_data.shape[0] + neg_data.shape[0]
print(N, "examples")
split = int(0.1 * N)
test_data = full_data.take(split).batch(64)
nontest = full_data.skip(split)
val_data, train_data = nontest.take(split).batch(64), nontest.skip(split).shuffle(

1000
).batch(64)

9316 examples

def train_model(
model, lr=1e-3, Reduced_LR=False, Early_stop=False, batch_size=32, epochs=20

):

tf.keras.backend.clear_session()
callbacks = []

if Early_stop:
early_stopping = tf.keras.callbacks.EarlyStopping(

monitor="val_auc",
mode="max",
patience=5,
min_delta=1e-2,
restore_best_weights=True,

)
callbacks.append(early_stopping)

opt = tf.optimizers.Adam(lr)

(continues on next page)
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if Reduced_LR:
# decay learning rate on plateau
reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(

monitor="val_loss", factor=0.9, patience=5, min_lr=1e-5
)
# add a callback to print lr at the begining of every epoch
callbacks.append(reduce_lr)

model.compile(
opt,
loss="binary_crossentropy",
metrics=[

tf.keras.metrics.AUC(from_logits=False),
tf.keras.metrics.BinaryAccuracy(threshold=0.5),

],
)
history = model.fit(

train_data,
validation_data=val_data,
epochs=epochs,
batch_size=batch_size,
verbose=0,
callbacks=callbacks,

)
# print(
# f"Train Loss: {history.history['loss'][-1]:.3f}, Test Loss: {history.

↪history['val_loss'][-1]:.3f}"
# )
return history

def plot_losses(history, test_data):
plt.figure(dpi=100)
plt.plot(history.history["loss"], label="training")
plt.plot(history.history["val_loss"], label="validation")
plt.legend()
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.show()
result = model.evaluate(test_data, verbose=0)
print(f" Test AUC: {result[1]:.3f} Test Accuracy: {result[2]:.3f}")

So if you take a look at the train_model function defined above, we are using the validation data exclusively for the
hyperparameter search. The test data is only used in plot_losses and gives us an estimation on model’s generalization
error.

19.5.1 Baseline Model

We first start off with a baseline model with similar structure to the model used in Standard Layers.

history = train_model(model, Reduced_LR=False)
plot_losses(history, test_data)
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Test AUC: 0.789 Test Accuracy: 0.829

So with the default hyperparameters, the baselinemodel above is clearly ovefitting to the training data. We first try adding
l2 regularization:

model = build_model(reg=0.01, add_dropout=False)
history = train_model(model, Reduced_LR=False, Early_stop=False)
plot_losses(history, test_data)

Test AUC: 0.813 Test Accuracy: 0.826

Great! Now We have a lower test loss and better AUC.
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19.5.2 Early Stopping

We can use early stopping regularization and return best weights based on maximum obtained AUC value for the vali-
dation data. This is done by adding the early stopping callback, when compiling the model:

early_stopping = tf.keras.callbacks.EarlyStopping(
monitor="val_auc", mode="max", patience=5, min_delta=1e-2, restore_best_

↪weights=True
)

Let’s see how the model performs with early stopping:

model = build_model(reg=0.01, add_dropout=False)
history = train_model(model, Reduced_LR=False, Early_stop=True)
plot_losses(history, test_data)

Test AUC: 0.796 Test Accuracy: 0.816

We have almost the same performance but in fewer number of epochs. Note that for learning purposes, we have limited
the number of epochs to 20 in this example. Early stopping regularization becomes more relevant when we typically have
a large number of epochs, as it halts the training and saves computational budget, unless there is gain in more training.

19.5.3 Reduced Learning Rate on Plateau and Dropout

Now let’s try reducing the learning rate and dropout. Since the training epochs is already limited to 20, we don’t use early
stopping here:

model = build_model(reg=0.01, add_dropout=True)
history = train_model(model, Reduced_LR=True, Early_stop=False, epochs=20)
plot_losses(history, test_data)
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Test AUC: 0.795 Test Accuracy: 0.824

19.6 Discussion

In this chapter, we explored means of reducing overfitting and enhancing feature selection in deep learning models.
Techniques suggested can give you a good head start on tuning your model’s hyperparameters. What is important is that,
you need to experiment to find a good set of hyperparameters. This can be time-consuming, so use your own judgment
and intuition to come up with a smart search strategy. Before you start hypertuning, make sure you obtain a baseline
model and slowly add more pieces to the puzzle, based on training and validation loss, AUC or other metrics.
There are also some toolkits for hyperparameter optimization that might be handy:

• Ray Tune for PyTorch [LLN+18]
• Keras-Tuner for Keras []
• Optuna [ASY+19]
• Hyperopt [BYC13]
• Scikit-Optimize [Lou17]
• Microsoft’s Neural Network Intelligence
• Google’s Vizer [GSM+17]
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CHAPTER

TWENTY

STYLE GUIDE

These are some notes for me and contributors on some style choice specific to this book.

20.1 Plots

Import dmol package. It will set-up the style for all plots.

20.2 Citations

The goal of this book is instructional and not a comprehensive review of the literature. Citations should be added as
needed for explaining concepts and justifying statements. Citations should be added as:

20.3 Links to Other Resources

Some topics are already covered well in other books and do not need to be repeated here. These should be linked and it
is clear what can be found in that resource. For example:

20.4 Tips and Warnings

Tips (bordered boxes in text) should be used sparingly to convey critical notes beyond bolding. Examples include shuffling
data, not using testing data for validation, etc. A warning is a possible mistake or pitfall. A tip is an important thing to
remember and not necessarily a potential mistake.

20.5 Right-column Notes

Notes on the right column are meant to be extra information that adds context, reminders, or additional details about the
main text. It should not be necessary to read these for understanding the main text. Should be equivalent to footnotes
in-text.
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CHAPTER

TWENTYONE

CHANGELOG

21.1 Version 0.5.1 (2022-06-20)

• Added SymPy
• Added description of nonlinearity to equiv chapter
• Added example implementation to equiv chapter

21.2 Version 0.5.0 (2022-06-17)

• Added Merhad’s Chapter on Hyperparameter optimization
• Removed permutation equivariance from equivariance chapter
• Finished irrep discussion in that chapter
• Started new chapter on modern molecule nets
• Removed pygraphviz
• Switched to rdkit

21.3 Version 0.4.3 (2022-05-31)

• Increased standard figure size a bit
• Revised GNN intro

21.4 Version 0.4.2 (2022-05-30)

• Doubled DPI on figures
• Revised GNN chapter to have discussion of future section
• Fixed long-standing emlp bug
• Improved logic on branch deploy
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21.5 Version 0.4.1 (2022-05-29)

• Add SchNet implementation
• Switched to three version scheme

21.6 Version 0.3 (2022-05-28)

• Centered output figures
• Made github button open on github
• Add SchNet description to GNN

21.7 Version 0.2 (2022-05-27)

• Put package onto pypi
• Revised fonts

21.8 Version 0.1 (2022-05-26)

• First versioned released
• Added consistent style to plots
• Simplifed header
• Replaced logo
• Bumped to latest dependencies
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