
A LiveCoMS Training Article

How To Be a Good Member of a
Scientific Software Community
[Article v1.0]
Alan Grossfield1*
1University of Rochester Medical Center, Department of Biochemistry
and Biophysics

This LiveCoMS
document is maintained
online on GitHub at
https://github.com/
GrossfieldLab/
software-community ; to
provide feedback,
suggestions, or help
improve it, please visit
the GitHub repository
and participate via the
issue tracker.

This version dated
August 24, 2022

Abstract
Software is ubiquitous in modern science — almost any project, in almost any discipline,
requires some code to work. However, many (or even most) scientists are not program-
mers, and must rely on programs written and maintained by others. A crucial but often
neglected part of a scientist’s training is learning how to use new tools, and how to exist
as part of a community of users. This article will discuss key behaviors that can make the
experience quicker, more efficient, and more pleasant for the user and developer alike.

*For correspondence:
alan_grossfield@urmc.rochester.edu (AG)

1 Introduction
Most practicing scientists (even the ones who write
code as part of their research) spend more time as
consumers as opposed to producers of software.
Moreover, we are constantly learning new skills and
solving new problems, which often means learning to
use new programs or new aspects of large packages.
This, combined with the complex nature of scientific
software (and often the missing or inaccurate docu-
mentation) means we have to ask for help. Sometimes
it’s because we don’t know how to accomplish a spe-
cific task. Others, it’s because there’s a feature we
need that isn’t implemented. Inevitably, there are
bugs.

In all of these cases, it is necessary to interact with

the people who develop and support the code. How
you go about it has an enormous impact on your likeli-
hood of success and how you are viewed. Asking com-
plete strangers for help is often intimidating, especially
the first time you do it. However, the best way to do
so is rarely taught explicitly — at best, it’s something
one picks up by example, from fellow lab members or
your PI. The goal of this paper is to reveal the hidden cur-
riculum – what’s expected of a software consumer, how to
ask for help, how to contribute productively to a software
community (regardless of whether you can write code).

This article is written from a the perspective of a
developer of academic open source scientific software,
based on my personal experience as a developer and
user. I released my first piece of open source code,
wham [1], a tool for analyzing umbrella sampling

Received: 18 October 2021Accepted: 27 January 2022 1 of 8 https://doi.org/10.33011/livecoms.3.1.1473
Living J. Comp. Mol. Sci. 2022, 3(1), 1473

https://github.com/GrossfieldLab/software-community
https://github.com/GrossfieldLab/software-community
https://github.com/GrossfieldLab/software-community
alan_grossfield@urmc.rochester.edu
https://doi.org/10.33011/livecoms.3.1.1473


A LiveCoMS Training Article

simulation, during the summer of 2000. My group
released LOOS[2, 3], a suite of tools for developing
new tools to analyze molecular dynamics simulations,
in 2008. Over the years, I’ve interacted with hundreds
of people who’ve tried to use one package or the other.
Most of these interactions have been positive, some
overwhelmingly so. Others were not. This article is an
attempt to distill my experiences into a concise set of
recommendations.

Much of what I suggest is universal, but some
points — like the reminder that the people providing
the support are likely volunteers — are not. Regard-
less, I view the interaction between developers and
users as an informal social contract, where each has
obligations and expectations for the other. Obviously,
every software community is unique, and many have
specific conventions for interaction, but we hope
that the recommendations we make are at the very
least a good starting point for new users of scientific
software.

2 Target Audience
This paper is primarily aimed at junior scientists who
are new to performing computational research and in-
experienced at asking for help. However, we hope it
will be valuable to anyone who uses software written
by others to do their research.

3 Good practices in asking
for help

3.1 Try to solve your own
problem

There’s absolutely nothing wrong with needing help to
figure out how to do something with a new piece of
software. Perhaps your use case wasn’t considered in
themanual, or you’re seeing behavior you don’t expect.
Perhaps you can’t even get it to install. Asking for help
is very reasonable — the developers want people to
use their software, andwith that comes an implied obli-
gation to support those users. However, keep in mind
that the developers of scientific software are, for the
most part, volunteering their time to provide that sup-

port, and as such it’s important to respect their time.
For this reason, asking the developers for help

shouldn’t be the first thing you do. Especially for
software with a large community, chances are some-
one else has run into similar difficulties, and you can
probably save yourself and the developers a lot of
time if you look for solutions on your own first. Indeed,
quickly debugging your use of other people’s software
is one of the major skills one develops when learning
to do computational research.

The first step is to read the error message carefully,
if there is one; this obviously doesn’t apply in all cases,
but it’s often applicable and far too often skipped.
It’s true that many software packages have cryptic or
unhelpful error messages, but far too often people
write for help when the solution is right in front of
them. If the error message says “Could not open
file foo.dat”, it’s worth checking whether there is a
file called “foo.dat” and if not figuring out what was
supposed to create it.

The second step is to check the manual. This too
might seem trivially obvious, but you’d be astonished
how many emails developers get that are directly
answered in the manual. If the manual is short, you
can read the whole thing. If it’s longer, search for
relevant-seeming keywords, scan the sections that
seem to pertain to your error message. If there’s an
FAQ (frequently asked questions) list, check that first;
asking an FAQ, especially in a public forum, is likely to
lead to grumbling.

Next, search the internet for the error message;
this works very well for software with thousands of
users, where it might very well deserve to be the
first option. It is less effective with less common
packages, but it’s an easy thing to check, so you’d be
foolish to skip it. Search for the whole text of the error
(excluding any verbiage that looks like it depends
on the compiler, etc), with and without the package
name. The latter can be important in the case where
the problem isn’t with the package per se, but with
something else in your setup.

One valuable strategy is to construct a minimal set
of circumstances that causes the problem. Even if you
initially encountered the problem while analyzing a 2
TB data set, that’s not going to be very helpful for di-
agnosing the problem (and you won’t easily be able to

2 of 8 https://doi.org/10.33011/livecoms.3.1.1473
Living J. Comp. Mol. Sci. 2022, 3(1), 1473

https://doi.org/10.33011/livecoms.3.1.1473


A LiveCoMS Training Article

share the data set with the developers so they can di-
agnose it). Can you reproduce the problem using only
a small portion of the data? Is the problem present
with some kinds of data (e.g. some frames of the tra-
jectory) but not others, and if sowhat is different about
those frames? Can you make the problem appear and
disappear with small changes in the settings? Testing
these things out may lead you to a solution, but even if
they don’t they’ll help you describe the problem more
precisely to the developers.

Along the same lines, it is often valuable to con-
struct a fake or minimal data set where the correct
answer is known (or easily computed outside the
program). This is particularly important when your
concern is that the program is producing incorrect
answers due to a coding error or assumptions incom-
patible with the input data. The more you precisely
you can narrow down what’s going wrong, the easier
the problem will be to diagnose.

Finally, you can consider diving into the code. This
decision depends very much on the complexity of the
package, your skill level, and how urgently you need
the solution. More often than not, comprehending the
whole software package will be too time consuming,
but there are tricks and shortcuts one can use to at
least figure out where things might be going wrong.
Figuring out where the error is occurring can some-
times help you figure out why it happened, so exam-
ine the stack trace if there is one. Alternatively, you
can search the code base for the error message, to see
what drove the error; it’s not uncommon for the com-
ments in the code to be clearer and more indicative of
what could go wrong than the error message itself. To
be clear: as an end user, you are not obligated to check
the code, but it can sometimes be a good shortcut to
help you either solve your problemon your ownor give
the developers what they need to solve it. Moreover,
if you do solve the problem, it’s a good idea to share
your solutionwith the developers; mostwill be grateful
to you for your help, and they have comments or im-
provements suggested improvements. If the package
is hosted on GitHub, consider opening a pull request
so your solution can be merged into the main branch.

3.2 Ask for help in the right place
Once you’ve determined you need help, the next ob-
vious step is to ask for it. How should you go about
doing so? Email the developer? Post in a forum? Raise
an issue on GitHub? Asking the question in the right
venue will greatly increase your chances of getting a
timely answer. Step 1 is to check the documentation:
look at the manual, check the README on the GitHub
repository, check the software website, etc — most of
the time, at least one of these sourceswill say how they
prefer to receive bug reports, feature requests, etc. Ac-
tually, there’s a step 0: make sure you’re looking at the
right piece of software. This might seem obvious, but
I’ve received multiple requests for help with software I
had nothing to do with; once it took 8 emails back and
forth before I figured this out (but more on that prob-
lem later).

Asking in the right place is particularly important if
the software is complex or has a large user community
— there may be separate forums for bug reports, us-
age help, and feature request, and asking in the wrong
place will make it unlikely the right people will see your
question. Moreover, the first impression you’ll make is
that you’re someonewho can’t be bothered to read the
instructions, whichwill make them less inclined to help
you.

3.3 Write a good bug report
The next step in the process is to actually communi-
cate your issue with the developers, generally in the
formof a bug report. The challenges inwriting an effec-
tive bug report have been discussed before in the con-
text of free software [4, 5]. Doing so requires striving
for two somewhat contradictory goals: you must give
the developer all of the relevant information about the
problem, as concisely as possible.

Taking the first part first: this is hard, because as
a user you’re usually not an expert, so you don’t know
what’s relevant. The only way to know for sure what
is and isn’t relevant is to develop a mental model for
the problem, which requires effort. Still, as pointed out
above, your prior efforts to solve the problem yourself
(see 3.1) will help you here. Moreover, you may find
that the act of writing the note asking for help may in
itself let you solve your problem. The process is anal-

3 of 8 https://doi.org/10.33011/livecoms.3.1.1473
Living J. Comp. Mol. Sci. 2022, 3(1), 1473

https://doi.org/10.33011/livecoms.3.1.1473


A LiveCoMS Training Article

ogous to rubber duck debugging [6], in that the act of
figuring out how to describe a problem clearly can lead
you to a solution.

Moreover, many developers will help you with
the process. For example, GitHub-based projects
have the option to set up issue templates [7]; as the
name implies, these templates contain a series of
questions one should answer when submitting a new
issue. Although they are generally customized for
each project, these questions are also a good baseline
for the kinds of information one should supply when
asking for support elsewhere. For example, for a bug
report one should

• Describe the bug, including the expected behav-
ior and how the current behavior differs.

• Give steps necessary to reproduce the bug. In-
clude any input data required.

• Give the version of the code you’re using. If
you’ve changed anything, say what you’ve
changed. If there are compile-time options, say
what you chose.

• Describe the platform you’re running on (e.g. the
operating system for a conventional computer,
hardware if it’s a tablet, etc.). If the problem is
related to building or installing the software, de-
scribe the build system (e.g. compiler version) or
package manager (e.g. Conda[8], Homebrew [9]).

• For a command line tool, provide the command
line and configuration information in plain text,
NOT as a screen shot. A screen shot is often
harder to read, and at a bare minimum forces
the developer to retype your command instead
of copying and pasting, which makes it harder
for them to spot possible typos, etc.

Following this format (or something similar) makes
itmuch easier for the developer to diagnose your prob-
lem, and the easier youmake it themore likely they are
to solve your problem quickly. While it’s not ideal be-
havior, busy developers (particularly those for whom
software support is a side activity) may shy away from
starting work on a problem that looks hard or uninvit-
ing, while a clear concise description of the problem is
more likely to spur immediate action.

Sometimes, the developer will be able to answer
your question based on the first email. However, their

reply will often contain questions or suggestions for
things to test. It is crucial that you read this message
carefully, and answer all of the questions to the best of
your ability when you reply. As a rule, these questions
aren’t asked idly; the person providing support is try-
ing to help you! Far too often, users don’t read the re-
ply email carefully, don’t answer the questions, try only
the first suggestion, or refuse to indicate what it is they
were actually doing. If you do this, the best case is that
it will take longer for you to get to a solution. More
likely, you will frustrate the person trying to help you,
and they may become reluctant to work on your issue.
Inmy experience, few things aremore frustrating than
trying to help someone who won’t help me help them.

Feature requests are similar: you need to describe
what you hope to accomplish and how you’d like to see
it work, as well as any current workaround you’ve de-
veloped. Keep in mind that many features sound easy,
but there can be deep design issues or technical nu-
ances that make their implementation difficult. More-
over, it is possible that the developer won’t be enthusi-
astic about your idea, even if it is doable— for example,
it might not coincide with their vision for the software.
Or, as discussed above, academic developers are gen-
erally not compensated for their work (obtaining NIH
funds to support software development is extremely
difficult) and simply might not have the time to work
on new features. For these reasons, do not be sur-
prised or insulted if the developers suggest you work
on a particular solution yourself and submit a pull re-
quest. This doesn’t mean they dislike your idea, just
that they’re busy – they’ll help guide you as best they
can, but they can’t do the work themselves.

3.4 Treat people with respect
This should go without saying, but if you’re asking for
help it behooves you to do so respectfully. We’re not
saying that you need to be obsequious. Rather, ap-
proach every interaction with respect: respect for peo-
ple’s time, respect for their ideas, respect for their iden-
tity (including among other things race, ethnicity, coun-
try, native language, sex or gender, or career stage). If
you’re asking for help, do so with the perspective that
the developer is volunteering their time to help you,
with minimal payoff to them. If you’re reporting a bug,
you’re almost certainly frustrated; try not to take that

4 of 8 https://doi.org/10.33011/livecoms.3.1.1473
Living J. Comp. Mol. Sci. 2022, 3(1), 1473

https://doi.org/10.33011/livecoms.3.1.1473


A LiveCoMS Training Article

frustration out on the developers. If you’re offering a
new feature, keep in mind that it may not align with
the developers’ vision for where the software is going.

If you’re interacting with fellow users in a support
forum, don’t mock questioners who are less experi-
enced than you— a question may seem foolish to you,
but even an uninformed or ill-directed question is an
opportunity for teaching. That said, we understand
that answering the same questions repeatedly is
frustrating and exhausting; one of our goals for this
document is that it become a resource to educate
new users of expected norms without consuming
developers’ time and mental bandwidth.

3.5 Contribute to the community
Once you’ve begun using a piece of software, it’s
worth looking for ways to contribute back. This can
take many forms, not all of which involve writing
code (though of course contributing bug fixes or new
features is extremely valuable). You don’t have to
be particularly expert – sometimes the best docu-
mentation comes from the inexperienced or newly
experienced users, who vividly remember not under-
standing something in the manual and can suggest
revisions that would make it clearer. Many packages
hosted on GitHub have the documentation in the
same repository, so the same pull request mechanism
can be used, but even if the docs are separate (or if
you find the idea of a pull request intimidating) you
could write a new paragraph or two and send them to
the developer. If you developed a toy example as you
were figuring out how to use the software, consider
sharing it. If one of the provided examples had to be
tweaked to work, share the tweaks. If the software has
an online forum (e.g. mailing list, GitHub discussions
or issues, etc), you might be able to contribute by
answering questions from less experienced users.

Unlike the other recommendations, this one isn’t
mandatory — it’s a “nice to have” rather than a “must
have”. However, there are a number of advantages to
doing it. First and foremost, you’ll be making a pack-
age that’s valuable to you stronger, which will help you
with your own scientific projects, while getting feed-
back from leading experts in the field. However, partic-
ipating productively in a software community is also a
good way to build your scientific communication skills.

Finally, helping others is an excellent way for a rela-
tively junior scientist to build their reputation in the
community, which in turn can lead to future collabo-
rations or even job opportunities. At the very least, it’s
always valuable when a lot of people in your field have
positive associations with your name.

4 Obligations of software
developers

This paper has focused on what software consumers
should do when asking for help. I suppose it could
even be read as a list of complaints about bad behavior
by users (though that’s not how I intend it). However,
each behavior described above has a corresponding
expectation for the developers. If we expect the users
to try to solve their own problem, it behooves us to
write good documentation, give examples, and (most
importantly) keep them up to date. If we want to be
contacted via GitHub only, we need to make that in-
formation clear and easy to find. If we are frustrated
by bug reports that don’t give us the information we
need, we should tell people what kinds of information
we need (e.g. by providing bug report templates). In
order to receive proper credit, we need to document
the appropriate way to cite the software. All of this in-
formation needs to be clearly written out and easy to
find.

Doing these things is valuable from a practical
perspective, as discussed elsewhere [10–12]; making
it easy for people to interact with us efficiently, even
if it costs us some effort up front, will make those
interactions more pleasant. Even setting that aside,
it’s the right way to do science — FAIR principles for
software development [13] prioritize not just releasing
code, but making it useable. That means documenting
it well and supporting people who try to use it.

Users approaching us in good faith deserve to be
treated fairly and courteously. Treating everyone with
courtesy and respect, regardless of their identity, is es-
sential if you want to build a vibrant effective commu-
nity. If the community is just you, the sole developer,
then the solution is obvious — when you interact with
users, do so in ways that make them feel valued and
respected.

5 of 8 https://doi.org/10.33011/livecoms.3.1.1473
Living J. Comp. Mol. Sci. 2022, 3(1), 1473

https://doi.org/10.33011/livecoms.3.1.1473


A LiveCoMS Training Article

As the user and developer community grows,
other people will get involved in supporting users. It’s
still your obligation as a developer to maintain those
standards. Making sure that racist, sexist, anti-LGBTQ,
etc language and behavior is unwelcome and unac-
ceptable is simply the moral thing to do. This doesn’t
just mean use of epithets in messages (though that’s
clearly unacceptable). Keep an eye on how things are
named, on jokes present in the code or messages, on
whose opinions are listened to and who is ignored.
Above all, if someone tells you a particular behavior
or situation is harmful, believe them. Something that
feels minor (or is just a joke) to you may hit others
very differently, and part of respect is understanding
and accounting for that.

It’s also important to recognize that even while
English has become the default language for science,
not everyone is a native speaker, which means that
some jargon, abbreviations, and idioms may be in-
comprehensible to a fair portion of your community.
Moreover, an awkwardly worded question often
reflects lack of familiarity with the language rather
than laziness or ignorance. It’s important to keep
accessibility in mind while creating documentation or
interacting with users in a forum.

Along the same lines, a developer who berates a
user for asking a stupid question, or is rude and dis-
missive in a technical discussion about a new feature,
is actively damaging the community, regardless of the
technical quality of their contributions. It’s not enough
for you as a developer to treat people with respect. To
the extent that there’s a community around your soft-
ware, you must attempt to make sure that community
is respectful; as developer, yourwords anddeeds carry
significant weight. If you call out bad behavior (or even
marginal behavior), that will go a long way towards set-
ting a good tone for your community. If you let it slide,
chances are others will assume you implicitly endorse
it.

If the justice perspective doesn’t persuade you, con-
sider the practical consequences. Bad behavior on the
part of developers of your project (or your community
in general) will drive users and developers away from
you. If interacting with your community is unpleasant,
folks will either use alternative codes or use your code
but not cite you. The next personwith an idea for an in-

novative new feature will add it to a different package,
or won’t do it at all (hurting the whole community). Ask
yourself: can your project really afford to drive away
talented hard-working people eager to help? Is it worth
it, just so a few people don’t have to engage with basic
courtesy?

Sometimes, code is published that is not particu-
larly intended for use. For example, it is good practice
to release the scripts used to analyze data in connec-
tion with the paper publishing the data, but many of
these scripts are one-offs, and the authors have little
incentive to polish them to the point of general use-
ability. Rather, the scripts are essentially there as doc-
umentation, not turn-key programs for others to use.
In this case, the authors have less of an obligation to
provide support, although at aminimum laying out the
software necessary to run it (e.g. versions of python
andnumpy, or aMakefile and compiler version) should
be required. That said, we recognize that some bit rot
is expected with academic code; once the student who
wrote the code graduates andmoves on, it’s very possi-
ble that there is no one else to maintain it. Solving the
long-term support and maintenance problem for aca-
demic software is a major problem, well beyond the
scope of this manuscript.

5 Summary
Given the importance of software to modern science
and the challenges in writing high quality code, vir-
tually all working scientists will need to ask for help
from time to time. The keys to doing so effectively are
remarkably simple: ask your questions succinctly and
only after putting in some effort to solve the problem
yourself, be considerate of other people’s time and
effort, and look for opportunities to contribute back
to the community. Developers should make it easy
for users to behave this way by providing clear docu-
mentation (including the appropriate venues to ask
for help), encouraging participation, and insisting on
respectful behavior from users and developers alike.

6 Checklists

6 of 8 https://doi.org/10.33011/livecoms.3.1.1473
Living J. Comp. Mol. Sci. 2022, 3(1), 1473

https://doi.org/10.33011/livecoms.3.1.1473


A LiveCoMS Training Article

GOOD COMMUNITY MEMBER
� Tries to solve problem themselves first
� Asks for help in the right place
� Writes informative bug reports
� Cites and acknowledges software appropriately
� Contributes to the community
� Treats fellow members and developers with

courtesy and respect

POOR COMMUNITY MEMBER
� Doesn’t read the manual or search the internet

before asking for help
� Doesn’t use the correct venue to ask for help
� Writes vague or unhelpful bug reports, or

doesn’t respond to questions
� Is rude or demanding when requesting support
� Treats fellow community members disrespect-

fully

A GOOD COMMUNITY
� Helps users solve their problems
� Is friendly and supportive when responding to

questions
� Is receptive to suggestions and critiques, re-

gardless of the source
� Encourages participation fromusers of all expe-

rience levels
� Encourages respectful treatment of all commu-

nity members, and calls out bad behavior

7 Author Contributions
The initial version of this paper was written by Alan
Grossfield.

For a more detailed description of author contribu-
tions, see the GitHub issue tracking and changelog at
https://github.com/GrossfieldLab/software-community.

8 Other Contributions
Dr. Tod D. Romo reviewed the document for style and
content. Dr. Justin A. Lemkul made numerous help-
ful suggestions, particularly regarding language acces-
sibility. Dr. David H. Mathews provided several edito-
rial suggestions. Dr. Jeffrey Lewis had suggestions re-
garding searching for help.

The cover image was created by artistfymo (https:
//linktr.ee/ArtistFrmYO).

For a more detailed description of contribu-
tions from the community and others, see the
GitHub issue tracking and Changelog at https:
//github.com/GrossfieldLab/software-community.

9 Potentially Conflicting
Interests

Alan Grossfield serves as a consultant to two compa-
nies: Moderna, Inc. and Atelerix Life Sciences, and is a
shareholder in Atelerix Life Sciences.

10 Funding Information
This work supported in part by NIH R21GM138970 to
Alan Grossfield.

Author Information
ORCID:
Alan Grossfield: 0000-0002-5877-2789

References
[1] Grossfield A, An efficient implementation of the

Weighted Histogram Analysis Method (WHAM),
http://membrane.urmc.rochester.edu/content/wham;
2021. http://membrane.urmc.rochester.edu/content/wham.

7 of 8 https://doi.org/10.33011/livecoms.3.1.1473
Living J. Comp. Mol. Sci. 2022, 3(1), 1473

https://github.com/GrossfieldLab/software-community
https://linktr.ee/ArtistFrmYO
https://linktr.ee/ArtistFrmYO
https://github.com/GrossfieldLab/software-community
https://github.com/GrossfieldLab/software-community
https://orcid.org/0000-0002-5877-2789
http://membrane.urmc.rochester.edu/content/wham
https://doi.org/10.33011/livecoms.3.1.1473


A LiveCoMS Training Article

[2] Romo TD, Grossfield A. LOOS: an extensible plat-
form for the structural analysis of simulations. Conf
Proc IEEE Eng Med Biol Soc. 2009; 2009:2332–2335.
https://doi.org/10.1109/IEMBS.2009.5335065.

[3] Romo TD, Leioatts N, Grossfield A. Lightweight
object oriented structure analysis: tools for build-
ing tools to analyze molecular dynamics simula-
tions. J Comput Chem. 2014; 35(32):2305–2318.
https://doi.org/10.1002/jcc.23753.

[4] Raymond ES, How To Ask Questions The Smart Way;.
http://catb.org/~esr/faqs/smart-questions.html.

[5] TathamS, How to Report Bugs Effectively;. https://www.
chiark.greenend.org.uk/~sgtatham/bugs.html.

[6] Hunt A, Thomas D. The pragmatic programmer.
Addison-Wesley;.

[7] Github Issue Templates;. https:
//docs.github.com/en/communities/
using-templates-to-encourage-useful-issues-and-pull-requests/
configuring-issue-templates-for-your-repository.

[8] Conda;. https://www.anaconda.com/.
[9] Homebrew;. https://brew.sh.
[10] Bangerth W, Heister T. What makes computational

open source software libraries successful? . ; 6:015010.
https://doi.org/10.1088/1749-4699/6/1/015010.

[11] Dall’Olio GM, Marino J, Schubert M, Keys KL, Ste-
fan MI, Gillespie CS, Poulain P, Shameer K, Sugar
R, Invergo BM, Jensen LJ, Bertranpetit J, Laay-
ouni H. Ten Simple Rules for Getting Help from
Online Scientific Communities. . ; 7:e1002202.
https://doi.org/10.1371/journal.pcbi.1002202.

[12] Elofsson A, Hess B, Lindahl E, Onufriev A, van der
Spoel D, Wallqvist A. Ten simple rules on how
to create open access and reproducible molecular
simulations of biological systems. . ; 15:e1006649.
https://doi.org/10.1371/journal.pcbi.1006649.

[13] Lamprecht AL, Garcia L, Kuzak M, Martinez C, Arcila R,
Martin Del Pico E, Dominguez Del Angel V, van de Sandt
S, Ison J, Martinez PA, McQuilton P, Valencia A, Harrow J,
Psomopoulos F, Gelpi JL, ChueHongN, Goble C, Capella-
Gutierrez S. Towards FAIR principles for research soft-
ware. . ; 3(1):37–59. https://doi.org/10.3233/DS-190026.

8 of 8 https://doi.org/10.33011/livecoms.3.1.1473
Living J. Comp. Mol. Sci. 2022, 3(1), 1473

https://doi.org/10.1109/IEMBS.2009.5335065
https://doi.org/10.1002/jcc.23753
http://catb.org/~esr/faqs/smart-questions.html
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://www.anaconda.com/
https://brew.sh
https://doi.org/10.1088/1749-4699/6/1/015010
https://doi.org/10.1371/journal.pcbi.1002202
https://doi.org/10.1371/journal.pcbi.1006649
https://doi.org/10.3233/DS-190026
https://doi.org/10.33011/livecoms.3.1.1473

	Introduction
	Target Audience
	Good practices in asking for help
	Try to solve your own problem
	Ask for help in the right place
	Write a good bug report
	Treat people with respect
	Contribute to the community

	Obligations of software developers
	Summary
	Checklists
	Author Contributions
	Other Contributions
	Potentially Conflicting Interests
	Funding Information

