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Abstract
The ability to predict transport properties (e.g., diffusivity, viscosity, and conductivity) is one of

the primary benefits of molecular simulation. Although most studies focus on the accuracy of

the simulation output compared to experimental data, such a comparison primarily tests the

adequacy of the force field (i.e., the model). By contrast, the reliability of different simulation

methodologies for predicting transport properties is the focus of this manuscript. Unfortunately,

obtaining reproducible estimates of transport properties from molecular simulation is not as

straightforward as static properties. Therefore, this manuscript discusses the best practices that

should be followed to ensure that the simulation output is reliable, i.e., is a valid representation of

the force field implemented. We also discuss procedures to use so that the results are reproducible

(i.e., can be obtained by other researchers following the same methods and procedures).

There are two classes by which transport properties are predicted: equilibrium molecular dynamics

(EMD) and non-equilibriummolecular dynamics (NEMD). This manuscript presents the best practices

for EMD, leaving NEMD for a future publication. As self-diffusivity and shear viscosity are the most

prevalent transport properties found in the literature, the discussion will also be limited to these

properties with the expectation that future publications will discuss best practices for thermal

conductivity, ionic conductivity, and multicomponent diffusivity.
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1 Introduction
Transport properties describe the rates at which mass,

momentum, heat or charge move through a given substance.

They involve the mean squared displacement (MSD) of

molecules as the system evolves dynamically. In general,

these properties can be computed by equilibrium molecular

dynamics (EMD) or by non-equilibrium molecular dynamics

(NEMD) methods. The EMD methods involve post-processing

of a standard molecular dynamics (MD) trajectory while

NEMDmethods require modifications of the underlying equa-

tions of motion and/or boundary conditions of the system.

Therefore, one advantage of EMD is that multiple transport

properties can be obtained from a single simulation, whereas

NEMD requires a separate simulation for each transport

property of interest.

Some molecular simulation packages include built-in post-

simulation analysis tools that automatically estimate trans-

port properties from an EMD or NEMD simulation (e.g., Refs.

[1–6]). In addition, several stand-alone trajectory analysis

tools are available which are intended to be simulation code

agnostic (e.g., Refs. [7–9]). However, there are often insuffi-

cient checks as to whether the actual underlying simulations

are adequate for making these estimates. For this reason,

we strongly discourage using these analysis tools as a “black

box,” as no amount of post-processing can compensate for

a poorly designed simulation. Following best practices for

both the molecular simulation set-up and data analysis is im-

perative to ensure that meaningful predictions are obtained.

The purpose of this document is to improve the quality of

published results and to reduce the time required for a novice

in the field to obtain meaningful and reliable results.

In addition to the present manuscript, we highly recom-

mend reviewing this list of existing resources:

1. Text books:

(a) Allen and Tildesley, Computer simulation of liquids,
pages 73–79, 274–281, and 292–296. [10]

(b) Frenkel and Smit, Understanding molecular simula-
tion: from algorithms to applications, pages 87–90
and 509–523. [11]

(c) Leach, Molecular modelling: principles and applica-
tions, pages 374–382. [12]

(d) Haile, Molecular dynamics simulation: elementary
methods, pages 189–192 and 485–488. [13]

2. Class notes:

(a) Panagiotopoulos. [14]

(b) Kofke. [15]

(c) Maginn. [16]

(d) Shell. [17]

3. Peer-reviewed articles:

(a) Chen et al., Are pressure fluctuation-based equilib-
riummethods really worse than nonequilibriummeth-
ods for calculating viscosities? [18]

(b) Hess, Determining the shear viscosity of model liquids
from molecular dynamics simulations. [19]

(c) Nieto-Draghi et al., A general guidebook for the
theoretical prediction of physicochemical proper-
ties of chemical for regulatory purposes, pages
13139–13140. [20]

(d) Ungerer et al., Molecular simulation of the thermo-
physical properties of fluids: From understanding to-
ward quantitative predictions. [21]

4. Software manuals:

(a) LAMMPS. [1]

(b) GROMACS. [2]

(c) AMBER. [3]

Most textbooks and class notes provide a thorough discus-

sion of EMD/NEMD theory with little discussion of practical

considerations. Review articles tend to focus on the numeri-

cal advantages and disadvantages of different methods but

assume that the reader already understands the subtleties of

implementing each method. Furthermore, although software

manuals describe some of the theory and implementation

of these methods in their respective environments, the doc-

umentation is typically insufficient for someone not familiar

with best practices for estimating transport properties. This

document supplements the existing literature by providing a

succinct checklist and discussing common pitfalls. We also

provide some suggestions and recommendations based on

our own experience, but ultimately it is up to the individual

researcher to test and validate their methods.

2 Equilibriummolecular dynamics (EMD)
for estimating transport properties

It is most convenient to consider compiling the transport

properties as an implicit part of any equilibrium MD simula-

tion. The added computational overhead is relatively small,

especially for the self-diffusivity. The main caveat is that

longer simulations than normal may be required to achieve

reasonable averages.

The general formula for computing a transport property

via an EMD simulation is given as

γ =

∫ ∞

0

dt〈ξ̇(t)ξ̇(0)〉 (1)

where γ is the transport coefficient (within a multiplicative

constant), ξ is the mechanical variable associated with the

particular transport property under consideration, and ξ̇ signi-

fies a time derivative. Integrals of the form given by Equation
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1 are known as “Green-Kubo” integrals. It is trivial to show

that an integrated form of Equation 1 results in an equivalent

expression for γ known as the “Einstein” formula

γ = limt→∞

〈(ξ(t) – ξ(0))2〉
2t =

1

2
limt→∞

ddt 〈(ξ(t) – ξ(0))2〉 (2)

where the derivative form is often preferred.

For self-diffusivity, ξ is the Cartesian atom position (rα)
and the time correlation function, ξ̇, in Equation 1 is of the

molecular velocities (vα). For shear viscosity, the integral
in Equation 1 is of the time correlation of the off-diagonal

elements of the stress tensor. For thermal conductivity, the

integral is over the energy current, and for ionic conductivity,

the integral is over the ionic current. Table 1 provides the

relevant equations for self-diffusivity (D) and shear viscosity
(η), as these properties are the focus of this work.

Although both Equation 1 (Green-Kubo) and Equation 2

(Einstein) are theoretically rigorous, in practice one method is

often preferred depending on the property being estimated.

In the case of self-diffusivity, we recommend the Einstein

(MSD) approach. In contrast, for shear viscosity we typically

recommend Green-Kubo, although for some systems the

Einstein approach may be preferable. As the simulation set-

up and computational cost are essentially the same for the

Green-Kubo and Einstein approaches, the primary difference

is the post-simulation data analysis required. Precision and

reproducibility of the estimated value are key factors for se-

lecting between the Green-Kubo or Einstein methods. For

this reason, we emphasize the importance of proper and

clearly communicated data analysis and rigorous uncertainty

quantification.

3 Checklist
An overview of the checklist items for each property (D and
η) and method (Green-Kubo and Einstein) is found on the

next page. Secs. 4-6 provide a detailed discussion for each

checklist item.

4 General transport checklist items
4.1 General transport: Simulation set-up
4.1.1 Correct ensemble

For a liquid solution, it is safest to run in the microcanon-

ical (NVE: constant number of molecules, volume, energy)
ensemble, rather than the canonical (NVT : constant number
of molecules, volume, temperature) or isothermal–isobaric

(NPT : constant number of molecules, pressure, temperature)
ensembles. This is because thermostats required to maintain

constant temperature and barostats required tomaintain con-

stant pressure can interfere with the dynamics of the system,

and thus the resulting transport properties can be skewed.

However, it is most common to desire D and η at a specified
temperature (T ) and pressure (P). This requires performing a
series of simulations in different ensembles:

1. NPT ensemble at desired T and P until the system den-
sity has properly equilibrated

2. NVT ensemble where the volume is set such that the
density is the average density computed from the NPT
run

3. NVE ensemble where the final configuration of the NVT
run is used as the initial configuration

It is important that each step consist of both an equilibration

and production period. The average pressure and tempera-

ture for the NVE production run are computed and should be
close to the input P and T of the original NPT run (although it
is typical to observe some deviation between the average and

prescribed values of P and T ). These average pressures and
temperatures must be reported along with the self-diffusivity

and/or viscosity.

Note that, although the best practice is to use the NVE
ensemble (Steps 1 to 3), it is common to see values reported

using the NPT ensemble (just Step 1) or NVT ensemble (Steps
1 and 2). We strongly discourage the use of the NPT ensem-
ble alone, because barostats (which alter positions through

volume changes) greatly affect the dynamics of a system. In

contrast, the NVT ensemble has been implemented success-
fully for transport property calculations and is quite com-

mon, especially for viscosity. For example, Fanourgakis et
al. reported that the NVT and NVE ensembles provide nearly
identical results for viscosity [22].

A study by Basconi and Shirts [23] reached a similar con-

clusion, and provides guidelines for how thermostats should

be applied when computing transport properties. To sum-

marize their results, NVE ensemble estimates for D and η are
statistically indistinguishable from those obtained by NVT sim-
ulations with velocity-scaling thermostats (e.g., Berendsen

[24], stochastic rescaling [25], and Nosé-Hoover [26] ther-

mostats) and a wide range of thermostat coupling strengths

(e.g., time constants of 0.1, 1, and 10 ps, where stronger cou-

pling is achieved with a smaller time constant). By contrast,

velocity-randomizing algorithms (e.g., Andersen thermostat

[27] and Langevin dynamics [28]) with strong coupling (time

constants of 0.1 and 1 ps) dramatically decrease D and in-
crease η relative to the NVE ensemble values. Therefore, we
recommend using either the NVT or NVE ensemble, with NVE
being preferred. If NVT simulations are used, we recommend
judiciously selecting the thermostat and coupling strength by

consulting Refs. [22, 23].
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CHECKLIST FOR COMPUTING SELF-DIFFUSIVITY
� Simulation set-up. No amount of data analysis can compensate for a poorly designed experiment. It is imperative
that the simulation sufficiently samples the relevant region of phase space.

� Sample from the correct ensemble. See Sec. 4.1.1.

� Increase the information extracted from each replicate simulation.

� Increase the output frequency. Einstein: see Sec. 5.2.1. Green-Kubo: see Sec. 5.3.1.

� Ensure that simulations are sufficiently long. Einstein: see Sec. 5.2.2. Green-Kubo: see Sec. 5.3.2.

� Check for system size effects. See Sec. 5.1.2

� Common pitfalls. Double-check that your results are not plagued by one of the common pitfalls. See Sec. 4.3.
� Post-simulation data analysis. Data analysis is key for obtaining reproducible and meaningful estimates of D.

� Improve precision by averaging over:

� Multiple time origins. See Sec. 4.2.1.

� Nmolecules. See Sec. 4.2.1.
� Three dimensions (x, y, z). See Sec. 4.2.1.
� Several replicate simulations. See Sec. 4.1.2.

� Clearly communicate how D is obtained from Equation 1 (Green-Kubo) or Equation 2 (Einstein). See Sec. 4.2.2.
Einstein: see Secs. 5.1.1 and 5.2.3. Green-Kubo: see Secs. 5.1.1 and 5.3.3.

� Correct for system size effects, e.g., Equation 3. See Sec. 5.1.2.

� Report the uncertainty in D:
� Bootstrap replicate simulations. See Sec. 4.2.3.

� Perform sensitivity analysis. Einstein: see Sec. 5.2.3. Green-Kubo: see Sec. 5.3.3.

� Validation. Compare your results with those from a reputable source. See Sec. 4.4.
� Special topics. Check if your system of interest requires some special considerations. See Sec. 5.4.

CHECKLIST FOR COMPUTING VISCOSITY
� Simulation set-up. No amount of data analysis can compensate for a poorly designed experiment. It is imperative
that the simulation sufficiently samples the relevant region of phase space.

� Sample from the correct ensemble. See Sec. 4.1.1.

� Increase the information extracted from each replicate simulation.

� Increase the output frequency. See Sec. 6.1.1.

� Ensure that simulations are sufficiently long. See Sec. 6.1.2.

� Check for system size effects. See Sec. 6.1.3.

� Common pitfalls. Double-check that your results are not plagued by one of the common pitfalls. See Sec. 4.3.
� Post-simulation data analysis. Data analysis is key for obtaining reproducible and meaningful estimates of η.

� Improve precision by averaging over multiple:

� Time origins. See Sec. 4.2.1.

� Stress tensor elements (three off-diagonal or all six). See Sec. 6.1.4.

� Replicate simulations. See Sec. 4.1.2 and 6.1.4.

� Clearly communicate how η is obtained from Equation 1 (Green-Kubo) or Equation 2 (Einstein). See Sec. 4.2.2.

Green-Kubo: see Sec. 6.2.1. Einstein: see Sec. 6.3.1.

� Report the uncertainty in η:

� Bootstrap replicate simulations. See Sec. 4.2.3.

� Perform sensitivity analysis. Green-Kubo: see Sec. 6.2.1. Einstein: see Sec. 6.3.1.

� Validation. Compare your results with those from a reputable source. See Sec. 4.4.
� Special topics. Check if your system of interest requires some special considerations. See Sec. 6.4.
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Table 1. Equilibrium molecular dynamics equations.
Property (γ) Mechanical variable (ξ) Green-Kubo (Equation 1) Einstein (Equation 2)

Self-diffusivity (D) rα 1dα
∫ ∞

0

dt
〈
1N

N∑
i=1
vα,i(t)vα,i(0)

〉
t0

1

2dα limt→∞

ddt
〈
1N

N∑
i=1
|rα,i(t) – rα,i(0)|2

〉
t0

Shear viscosity (η) rαvβ VkBT
∫ ∞

0

dt 〈ταβ (t)ταβ (0)〉t0 V
2kBT limt→∞

ddt
〈(∫ t

0

dt′ταβ (t′)
)2〉

t0t = time
r = position
v = velocity
α, β = x, y, or z Cartesian coordinates of the atoms or molecule center of mass
dα = dimensionality (1, 2, or 3)
N = number of atoms or molecules (see Sec. 4.2.2)
V = volume
T = temperature
kB = Boltzmann constant
ταβ (t) = 1V ∑Ni=1

(mvα,i(t)vβ,i(t) + rα,i(t)fβ,i(t)) ,α 6= βfβ,i = the force acting on particle i in direction βm = mass of particle
〈· · · 〉t0 = an average over time origins (see Sec. 4.2.1)

4.1.2 Replicate simulations

To smooth noise in the Green-Kubo integral or Einstein slope,

we recommend generating independent replicate trajecto-

ries (i.e., different initial configurations or random seeds to

initialize velocities). The primary advantage of performing

replicates as opposed to one longer simulation is the com-

putational speed-up. Figure 2 in Ref. [29] demonstrates that

an average of 10 short replicate simulations converges to

the same value as a single long simulation. Since these repli-

cates can be performed in parallel, the real time is reduced,

although the CPU time may be the same or more. In addition,

replicate simulations are useful if a single simulation does

not adequately sample phase space, i.e., is trapped in a local

minimum or has slow dynamics.

Furthermore, replicates can provide rigorous estimates

of uncertainty (see Sec. 4.2.3). The uncertainty (specifically,

the standard error of the mean) is inversely proportional to

the square root of the number of replicates (see Figure 7 of

Ref. [30] and Figure 8 of Ref. [31]). Therefore, increasing

the number of replicates is a simple, fast, and direct way to

reduce the uncertainty. For example, the fluctuations in η are

much smaller for the average of 10 replicates compared to

that of a single longer simulation (see Figure 2 of Ref. [29]).

As fluctuations in η are typically much larger than D, more
replicate simulations are required for estimating viscosity (see

Sec. 6.1.4).

Note that, although the best practice is to start each inde-

pendent replicate at the NPT step, it is common to use the

same density (NVT step) for each replicate. This approach
is acceptable assuming that the authors provide the corre-

sponding uncertainty in P (see Sec. 4.1).
4.2 General transport: Post-simulation

analysis
4.2.1 Improved precision

In practice, several tricks-of-the-trade are employed to reduce

fluctuations and, thereby, the standard deviation (σ). For

self-diffusivity, it is a standard practice to average the mean

squared displacement or velocity autocorrelation function

over all N molecules (see Table 1). For shear viscosity, it
is not possible to average over the number of molecules

because viscosity is a collective property that depends on the

pressure/stress tensor of the system. For this reason, it is

much easier to get precise diffusivity estimates than it is to

get precise viscosity estimates; additional tactics are typically

employed to improve the viscosity precision, namely, large

numbers of replicate simulations.

The self-diffusivity is a tensor, and it is common prac-

tice in homogeneous systems to average the diagonal com-

ponents, such that D = 1

3
(Dxx + Dyy + Dzz) where for exam-

ple Dxx = 1
2
limt→∞

ddt
〈
1N

N∑
i=1
|xi(t) – xi(0)|2

〉
. Since formally

Dxx = Dyy = Dzz for homogeneous systems, one can test the
equivalence of the three terms as a check on a simulation

and even to make a crude estimate of the uncertainty in D.
We also encourage the user to verify that the off-diagonal
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terms are approximately zero. Note that for inhomogeneous

systems, the diagonal terms will not necessarily be equivalent

and the off-diagonal terms may not be zero.

For viscosity, the recommended practice is to use mul-

tiple components from the pressure/stress tensor. For ex-

ample, although early studies only implemented a single off-

diagonal component (typically xy), the common practice in
recent studies is to use all three off-diagonal (xy, yz, xz) and
sometimes three additional modified diagonal terms of the

pressure/stress tensor (see Sec. 6.1.4).

Finally, for both self-diffusivity and shear viscosity it is

common to average over multiple time origins (t0). It is impor-
tant that the difference between subsequent t0 values (δt0)
be longer than the correlation time so that the different time

intervals are independent (see Ref. [32] for details regarding

correlation time).

4.2.2 Clear communication

Transport properties are estimated by integration of Equation

1 or calculating the slope of Equation 2 with respect to time.

Both methods involve some judgment on the part of the

user and results can vary depending on where the slope is

taken (Einstein approach) and for how long the integral is

carried out (Green-Kubo approach). Some recent work has

suggested some guidelines for how to compute an objective

estimate of the viscosity using the Green-Kubo approach [30].

Similar methods for estimating other transport properties

from Equations 1 or 2 should be possible to develop.

As no single best practice can be recommended for the

region over which the slope or integral is calculated, it is im-

portant to justify how this decision was made and then clearly

communicate the approach used in any publication. Further-

more, it is critical to quantify the degree of variability in the

estimated property that arises from assumptions in the data

analysis, e.g., the time interval over which the Einstein slope

is computed. As post-simulation analysis is an essential step

for estimating transport properties, we recommend providing

data analysis scripts as supporting information to improve

future reproducability.

4.2.3 Uncertainty quantification

Providing meaningful estimates of uncertainty is a pivotal,

but often overlooked, step in reporting molecular simulation

results. For this reason, in addition to the discussion provided

below, we recommend a close study of Refs. [33] and [32].

Although force field deficiencies can lead to large systematic

deviations with respect to the “true” experimental value, we

limit our discussion to random uncertainties associated with

fluctuations in the simulation output.

Replicates can provide a rigorous uncertainty assessment.

We recommend bootstrapping the uncertainties by randomly

sampling which replicates are included in the data analysis

procedure [34]:

1. Randomly select (with replacement) a subset of replicate

simulations

2. Calculate the relevant average quantity from this ran-

dom set, i.e., 〈ξ̇(t)ξ̇(0)〉 for Green-Kubo or 〈(ξ(t) – ξ(0))2〉
for Einstein

3. Compute transport property (γ) from Equations 1 or 2

4. Repeat steps 1 through 3 several hundred times

5. Generate distribution of D or η values from step 4
6. Determine lower and upper uncertainty bounds of D or

η at desired confidence level, 1 – α

In step 1, the resampled set should be the same size as the

original set of replicates, i.e., Nboots = Nreps. For this reason,
replacement after each random selection is key to ensure

that a different set is resampled for each cycle (step 4). Note

that this approach is typically most reliable when Nreps ≥ 20.
However, we recommend this approach even if only a few

replicate simulations are performed to at least have a rough

estimate of the uncertainty.

Step 6 requires the probability density function (PDF, or

alternatively the cumulative distribution function, CDF) for

D or η. The bootstrapped distribution of D or η obtained
in Step 5 is used to approximate the PDF, which is typically

expressed as either a histogram or by fitting to a normal

distribution. Solving for the lower and upper bounds of D or
η can be performed in several different ways, but the two-

sided tail approach is most common. With this approach, the

lower and upper bounds correspond to the values that yield

α/2 × 100% of the integrated PDF in the lower and upper
tails. We recommend using α = 0.05, corresponding to a 95%

confidence interval.

4.3 General transport: Common pitfalls
When simulating in the NVE ensemble, it is imperative that the
integrator conserve energy. Performing simulations with sin-

gle precision is one of the main causes for poor conservation

of energy due to the accumulation of round-off errors. For

this reason, we recommend the use of full double precision

or double/fixed precision.

The most common method to check for energy conser-

vation is to systematically adjust the time step and plot the

energy versus time. The energy should show little to no drift

over the timescale of the simulation. Haile [13] provides a

detailed discussion of energy conservation and time step size

(see Chapter 4.4 of his book). If constraints on bond lengths

or angles are used, we also recommend checking to make

sure that these constraints are maintained.

An important implicit assumption in Equations 1 and 2

is that the time over which these expressions are evaluated
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is much larger than the correlation time of the variable ξ.

This assumption is often satisfied easily for simple liquids,

where relaxation times are fast, but becomes problematical

for systems with sluggish dynamics. Therefore, insufficient

simulation time is a common pitfall in estimating transport

properties. To avoid this pitfall, we recommend performing

a series of progressively longer simulations to determine

if the estimated values deviate significantly with increasing

simulation time.

Another way to test whether a simulation is long enough

is to determine whether the molecules in the system explore

a sufficiently diverse region of configuration space. This can

be done by calculating the MSD of the molecules in the sys-

tem and comparing this to either the radius of gyration of

the largest molecule in the system (rG) or the box length (L).
If the square root of the MSD is larger than rG (or better
yet, is comparable to or larger than L), then the molecules
have traversed far enough to sample a significant amount of

configuration space.

4.4 General transport: Validation
Validation is an important step to verify that the simulation

set-up and post-simulation analysis are performed properly.

One tool that can serve this purpose is the Standard Refer-

ence Simulation Website provided by the National Institute

of Standards and Technology (NIST) [35]. “Benchmark Simula-

tion Results” for static and transport properties are reported

for both “toy” problems, such as the Lennard-Jones fluid, and

more sophisticated systems, such as various water models,

small n-alkanes, and light gases. We recommend that novice
users attempt to replicate the transport properties reported

for some of these simple systems. Subsequently, we recom-

mend attempting to replicate literature values reported for

a similar system to the one of interest. In general, validation

should be performed prior to simulating new systems for

which a comparison is not possible.

5 Self-diffusivity
We recommend the Einstein approach for computing

self-diffusivity as it is robust and the most commonly used

method. However, we also recommend validating that the

Green-Kubo method provides similar estimates. Although

systematic deviations are often observed between the two

methods, if the analysis is done properly the values should

agree within their statistical uncertainties [36–38].

Sec. 5.1 discusses self-diffusivity checklist items that ap-

ply to both the Einstein and Green-Kubo approaches. Secs.

5.2 and 5.3 discuss checklist items that are specific to either

the Einstein or Green-Kubo approaches, respectively, for es-

timating the self-diffusion coefficient. Sec. 5.4 provides a

brief discussion of some topics that are relevant in certain

applications.

5.1 Self-diffusivity: General
5.1.1 Data analysis

The equations for computing D listed in Table 1 require the
use of “unwrapped coordinates”. That is, periodic boundary

conditions should not be applied to the coordinates, or else

the self-diffusivity will be underestimated.

It is possible to use the coordinates / velocities of each

atom or the center of mass of each molecule in the self-

diffusivity expressions. In the long-time limit, the results

should be the same (see Figures 1 and 2 of Ref. [38]). Never-

theless, we recommend using the molecular center of mass

and not the individual atomic coordinates. The reason is that

short-time vibrational displacements of individual atoms, that

do not contribute to the self-diffusivity, are tracked when

atomic coordinates are used while the center of mass dis-

placements are much better behaved (see Figure 3 of Ref.

[38]). In either case, it is imperative to use the correct value of

N (number of atoms or number of molecules) and to clearly
state which approach is used.

5.1.2 Finite size effects

Finite size effects are significant for self-diffusivity calculations

and must be accounted for to obtain meaningful estimates.

Calculated self-diffusivities increase with increasing system

size, as can be seen in Figure 1 from Ref. [39] where the

self-diffusivity of high pressure CO2 differs by approximately

10% depending on the size of the system. We therefore stress

the importance of reporting the self-diffusivity in the “infinite”

box limit. This can be determined in one of two ways.

The first approach is to perform simulations with progres-

sively larger system sizes, i.e., by increasing the number of

molecules, N, and the box length, L, such that the density
is constant. The computed self-diffusivities are then plotted

as a function of N–1/3. As shown in Figure 1, such a plot is
approximately linear, and extrapolating to when N–1/3 = 0
(i.e., N→∞) gives an estimate of the self-diffusivity (although
note that some studies, such as Ref. [40], extrapolate D with
respect to N–1). The downside of this approach is that it re-
quires multiple simulations and the large system simulations

are computationally intensive.

The second approach is to estimate the infinite system

self-diffusivity from a single simulation using an analytic cor-

rection factor proposed by Yeh and Hummer [41]. The correc-

tion is given by

D∞ = D(L) + kBTξ
6πηL (3)

where D∞ is the infinite system size self-diffusivity, D(L) is the
computed self-diffusivity for a cubic box with edge length L,
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Figure 1. Self-diffusivity obtained with Einstein approach demon-
strates significant system size dependence. Reproduced with per-

mission from J. Chem. Phys. 145, 074109 (2016). Copyright 2016

AIP Publishing [39]. Blue dashed lines are obtained by extrapolating

the molecular dynamics (MD) results to the infinite system size, i.e.,

N–1/3 → 0. Red diamonds are the values of D after applying the Yeh-
Hummer (YH) finite-size correction, i.e., Equation 3. The red dashed

line is an average of these corrected values of D. For further details,
see Ref. [39]. Note that 1 bar = 105 Pa.

kB is the Boltzmann constant, T is the absolute temperature,
η is the shear viscosity, and ξ = 2.837298 is a dimensionless

constant determined by an Ewald-like summation of a peri-

odic lattice. The shear viscosity must be computed separately

but fortunately, η is not typically a strong function of system

size (see Sec. 6.1.3).

As can be seen in Figure 1, both methods give similar re-

sults (compare the blue and red dashed lines). The advantage

of the Yeh-Hummer correction is that a good estimate of the

self-diffusivity can be obtained from a single simulation. Note

that a different correction is required for non-cubic simula-

tion boxes [42]. Also note that a different correction may be

more appropriate for anisotropic condensed-phase systems

(e.g., those containing membranes), discussed in Sec. 5.4.

5.2 Self-diffusivity: Einstein
5.2.1 Output frequency

Self-diffusivities are computed by post-processing a trajectory.

For the Einstein self-diffusivity, this means the positions of

the atoms (or molecule centers of mass) should be stored as

a function of time so that the MSD can be computed. How of-

ten should one save positions and at what frequency? There

will always be a trade-off between accuracy (which argues for

more configurations saved more frequently) and file size or

runtime performance (both of which argue for fewer config-

urations saved less frequently). Since the long-time slope in

MSD is required in the Einstein approach, configurations do

not need to be saved at a high frequency. As a general guide-

line, to balance file size and accuracy, we recommend that

approximately 1000 independent configurations be saved at

uniform time intervals over the length of a production run.

5.2.2 Simulation length

The necessary simulation length depends on the number of

molecules, where fewer molecules require more simulation

time and vice versa. Regardless, the simulation must be long

enough so that the molecules are in the diffusive regime.

We recommend computing the slope from a log-log plot of

MSD with respect to time, which should be approximately 1 in

the diffusive regime (see Figure 2). As mentioned in Sec. 4.3,

another heuristic is whether the square root of the MSD is

sufficiently large, i.e., larger than the radius of gyration of the

molecule at the low end and larger than half the box length

at the high end. If these criteria are met, then one can have

confidence that the diffusive regime has been sampled.

5.2.3 Data analysis

In order to obtain reliable estimates of D, it is important to
consider how the linear regression is performed for the MSD

with respect to time (Equation 2). Specifically, the time interval

that is included in the regression can have a significant impact

on the predicted value of D. We recommend that only the
“middle” of the MSD be used in the fit to approximate the

long-time slope. Short time must be excluded as it follows a

ballistic trajectory, while very long time is excluded due to the

increased noise. Currently, we are unaware of an objective

approach for defining the “middle” region. Until such an

approach exists, we recommend that the author reports how

the region was selected and how much variability in D can
be attributed to the choice of this region. In addition, the

uncertainty in the fit of the slope should be reported.

A typical log-log plot, borrowed from Ref. [36], is provided

in Figure 2, where the linear regression to the “middle” region

is included. From visual inspection, the “ballistic” short-time

interval ranges from the beginning of the simulation to ap-

proximately 100 ps. The “middle” region is identified by the

linear regime with a slope of 1 (for a log-log plot) spanning

from approximately 100 ps to 1000 ps. Note that the noisy

“long-time” simulation data (beyond 1000 ps) are not depicted

in Figure 2 and are excluded from the linear fit.

5.3 Self-diffusivity: Green-Kubo
5.3.1 Output frequency

If the self-diffusivity is computed using a Green-Kubo ap-

proach, the velocities are needed as a function of time. Note

that compared to the position information required by the

Einstein approach, velocity information must be stored at a

much higher frequency for the Green-Kubo approach. This

is because the velocity autocorrelation function (VACF) that
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Figure 2. Log-log plot of MSD with respect to time is used to identify
the “middle” region. Reproduced with permission from J. Phys. Conf.

Ser. 774 (2016) 012039, under the Creative Commons Attribution

3.0 license [36]. The line colors correspond to different torsional

energies (Etors). The dash-dotted and solid red lines represent the
same simulation results averaged over one and sixty time origins,

respectively. The gray dashed lines are linear fits to the corresponding

diffusive regimes, as determined by the authors. For further details,

see Ref. [36]. Note that 1 Å = 10–10 m.

must be integrated decays very rapidly and fine time resolu-

tion is needed to perform an accurate numerical integration.

For this reason, we recommend saving the velocities at least

every 4 to 5 fs. Be warned that this will result in trajectory files

that are significantly larger than the positional trajectories

required for the Einstein approach, which are saved at lower

frequencies (see Sec. 5.2.1).

5.3.2 Simulation length

Simulations should be long enough that the Green-Kubo in-

tegral has reached a plateau. Note that the plateau time is

not the same as the required simulation time, since multiple

time origins (t0) are used to compute the Green-Kubo integral
(see Sec. 6.1.2 for a more thorough discussion regarding the

relationship between simulation times and plateau times).

A trade-off exists when deciding the elapsed time between

subsequent time origins (often referred to as the “lag”). Specif-

ically, if the lag is too short the VACF will not converge to 0

and, thus, the Green-Kubo integral will not converge to the

appropriate finite value. By contrast, if the lag is too long

the long-time VACF “tail” will introduce considerable noise in

the integration. A good rule of thumb for ensuring that the

calculated VACF has been sampled adequately is to perform

simulations that are approximately a factor of 20 times longer

than the estimated decay-to-zero time. The lag between time

origins should then be greater than the decay-to-zero time

but not exceed half the total simulation time. For example,

water models at liquid conditions typically exhibit a decay-to-

zero time on the order of 1 ps, such that a simulation of 20

ps with a lag time between 1 and 10 ps should yield a well

converged VACF (see Figures 12-15 of Ref. [43]).

5.3.3 Data analysis

The most common method for computing the self-diffusivity

from the VACF is to do a direct numerical integration of the

VACF. If this is done, the author should provide details on

how the integration was carried out (numerical procedure,

algorithm, cut-off times, etc.). The running integral versus

time is calculated and the self-diffusivity is estimated from

the plateau value. Since the long-time “tail” of the VACF can

contribute significantly to the integral [2, 10], care must be

taken to ensure that the VACF properly converges to 0 at long

times. As with the Einstein approach, a cut-off time should

be chosen to determine when the integral has converged. It

is important to report how sensitive the estimate is to this

cut-off time.

5.4 Self-diffusivity: Special topics
5.4.1 Considerations for membrane systems

Although molecular simulation is well-suited for predicting

diffusivity coefficients in membranes, several issues arise

that require special attention. For example, the standard non-

bonded long-range cut-off corrections are not straightforward

in a heterogeneous system. For this reason, it is common to

modify the non-bonded interactions such that tail corrections

are not needed, e.g., cut-and-shift, force-switch [2, 5]. How-

ever, it is important to investigate the impact modifying the

non-bonded potential has on the diffusion coefficients.

Furthermore, since membranes require anisotropic pres-

sure control it is important to use barostats/thermostats that

maintain the correct isobaric/isothermal ensemble. Venable

et al. have shown that as long as a high-quality barostat and
thermostat are used (such as those implemented via so-called

“extended system” methods [26, 44]), diffusion coefficients

determined from NVE and NPT simulations are quite similar
[45].

Finally, correcting diffusion coefficients for finite size ef-

fects (i.e., when periodic boundary conditions are employed)

in membrane systems requires some additional consid-

eration. Camley et al. develop a method for determining
diffusion coefficients in membrane systems which uses the

immersed-boundary approach in the context of the the

Saffman-Delbrüuck model [46]. This method is available via

https://diffusion.lobos.nih.gov.
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6 Viscosity
Although the popularity of NEMD methods for predicting

shear viscosity has increased in recent years, Ref. [18] demon-

strates that EMD methods can be of equal accuracy and re-

liability to NEMD as long as best practices are followed, i.e.,

proper system set-up and thorough data analysis. That being

said, EMD works best for fluids with relatively low viscosity,

i.e., typically less than 20× 10–3 Pa-s, although EMD has been
successfully implemented for systems near 50 × 10–3 Pa-s.
Higher viscosity systems are extremely difficult to compute

with EMD and so NEMD methods are often preferred in this

case.

The recommended EMD approach for predicting viscosity

is Green-Kubo. The Green-Kubo approach appears to be the

most popular EMD method found in the literature and, more

importantly, less arbitrary data analysis methods exist that

improve the reliability and reproducibility (see Sec. 6.2.1).

We should note, however, that Ref. [19] states that the

Einstein relation is more convenient than Green-Kubo for

viscosity because “inaccuracies in the long-time correlations

can be ignored by only considering integrals over shorter

times.” Although this observation is true (see Figure 9), sev-

eral algorithmic advances have been implemented with the

Green-Kubo approach since 2002 (when Ref. [19] was pub-

lished). Most of these improvements rely on performing large

amounts of replicate simulations (see Sec. 6.1.4). Therefore,

we only recommend utilizing the Einstein approach when

replicate simulations are too computationally expensive (see

Sec. 6.3.1).

Sec. 6.1 discusses shear viscosity checklist items that apply

to both the Einstein and Green-Kubo approaches. Secs. 6.2

and 6.3 discuss checklist items specific to the Green-Kubo

and Einstein approaches, respectively, for estimating viscosity.

Sec. 6.4 provides a brief discussion of some topics that are

relevant in certain applications.

6.1 Viscosity: General
6.1.1 Output frequency

As with the self-diffusivity, shear viscosity is computed by

post processing a data file. If the Green-Kubo procedure

is used, stress tensor components need to be written out

frequently enough so that an accurate estimate of the time

integral can be made. Since the integral decays quickly with

time, we recommend writing the stress tensor every 5 to 10

fs. If the Einstein relationship is used, less frequent writes

can be made over the length of the simulation. The user

should perform some preliminary tests to ensure write fre-

quencies are sufficient as well as to estimate file sizes for a

given simulation.

6.1.2 Simulation length

Since viscosity is a collective property, i.e., the stress tensor

depends on all Nmolecules, about ten times more data are
required to compute viscosity than diffusivity. As with the

self-diffusivity, the simulation time needs to be long enough

so that all the relaxation processes are adequately sampled.

We recommend applying similar heuristics as those described

in Sec. 4.3 to determine the length of the simulation required.

Figure 3, borrowed from Ref. [30], demonstrates that if

the length of each independent trajectory is too short the

viscosity will not converge to the correct value, regardless

of how many replicates are used. Specifically, the average

viscosity obtained from 100 replicates of 500 ps appears to

diverge from the 1, 2, and 4 ns simulation results, suggesting

that 500 ps is not sufficiently long for this system. Since it is

very hard to know how long an individual trajectory needs to

be a priori, we recommend performing an analysis similar to
that shown in Figure 3 to ensure adequate sampling.

It is important not to confuse the Green-Kubo integration

time (the abscissa for the top panel of Figure 3) with the

simulation length (the different color lines in both panels of

Figure 3). Recall that the Green-Kubo integral (plotted in the

top panel) is evaluated using multiple time origins (t0), so the
Green-Kubo integral contains more independent trajectories

for the 4 ns line than the 500 ps line. Therefore, the time at

which the Green-Kubo integral reaches a plateau (around 100

ps in the top panel of Figure 3) is not the same as the required

simulation time. For sufficient independent trajectories, the

required simulation time should typically be around an order

of magnitude greater than the plateau time, e.g., Figure 3

demonstrates that trajectories of 1 ns or longer are required

for a plateau time of approximately 100 ps.

Figure 4, borrowed from Ref. [30], demonstrates that

the plateau time increases with increasing viscosity, where

an order of magnitude increase in viscosity corresponds to

approximately an order of magnitude increase in the plateau

time. In order to account for the increase in the plateau time,

higher viscosity fluids require longer overall simulation times.

6.1.3 Finite size effects

Finite size effects can arise in small, dense systems due to

limited space for configurational rearrangements [47]. Kim et

al. [47] demonstrate that a complex oscillatory relationship

exists between the shear viscosity of dense fluids and V–1/3,
where the oscillations dampen with increasing system size

(see Figures 8 and 9 of Ref. [47]). However, extrapolation

to the infinite system size viscosity is not feasible due to the

non-linear scaling behavior with respect to V–1/3.
Fortunately, the error introduced by neglecting finite size

effects is significantly smaller than that for self-diffusivity

(recall Figure 1). For example, Figures 5-6 from Refs. [39]
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Figure 3. Viscosity (η) and corresponding standard deviation (σ)
depend on simulation length. Reprinted with permission from J.

Chem. Theory Comput., 2015, 11 (8), pp 3537–3546. Copyright (2015)

American Chemical Society Ref. [30]. Different lines and symbols

correspond to different simulation lengths, i.e., trajectory times. The

inset in the top panel plots the standard deviation, σ. For further

details, see Ref. [30]. Note that 1 cP = 10–3 Pa-s.

and [30], respectively, suggest that finite size effects are not

significant for systems with as few as 125 and 500 molecules,

respectively. Other authors, including Daivis and Evans [40],

also report that shear viscosity has a weak dependence on

system size (see Figure 4 of Ref. [40]). It is thus reasonable

to neglect a system size correction, although if possible we

recommend that users carry out some additional calculations

to justify this assumption.

To test for system size dependence, one can run a series of

simulations over a range of Nmolecules, where N is varied at
least by a factor of two and ideally an order of magnitude. By

plotting the computed shear viscosity versus N–1/3 (or V–1/3),
it is possible to ascertain if there are system size effects. We

encourage authors to report these findings to help further

verify system size effect trends on viscosity.

Figure 4. Plateau time increases with increasing viscosity (decreasing
temperature). Reprinted with permission from J. Chem. Theory

Comput., 2015, 11 (8), pp 3537–3546. Copyright (2015) American

Chemical Society Ref. [30]. Different lines correspond to different

temperatures and, thus, different viscosities. For further details, see

Ref. [30]. Note that 1 cP = 10–3 Pa-s.

Figure 5. Finite size effects are negligible for viscosity obtained with
Green-Kubo approach. Reproduced with permission from J. Chem.

Phys. 145, 074109 (2016). Copyright 2016 AIP Publishing [39]. Dif-

ferent symbols correspond to different types of glymes (Gi). Dashed
lines are average value for each glyme from various system sizes (N).
For further details, see Ref. [39]. Note that 1 cP = 10–3 Pa-s.

6.1.4 Improved precision

To improve statistical averaging, it is common to include mul-

tiple terms from the stress tensor. For example, Figure 7,

borrowed from Ref. [19], demonstrates the improvement of

averaging the three off-diagonal elements of the pressure ten-

sor, compared to a single off-diagonal element. To maximize

simulation efficiency for an isotropic system, we recommend

that users employ a generalized form of the Green-Kubo in-

tegral [48, 49], which uses all six independent components

of the stress tensor. Details are given in the Appendix of Ref.

11 of 20

https://doi.org/10.33011/livecoms.1.1.6324Living J. Comp. Mol. Sci. 2019, 1(1), 6324

https://doi.org/10.33011/livecoms.1.1.6324


A LiveCoMS Best Practices Guide

Figure 6. System size does not affect viscosity (η) obtained with
Green-Kubo approach or the corresponding standard deviation (σ).

Reprinted with permission from J. Chem. Theory Comput., 2015, 11

(8), pp 3537–3546. Copyright (2015) American Chemical Society Ref.

[30]. Different colors correspond to different numbers of molecules.

The inset plots the standard deviation, σ. For further details, see Ref.

[30]. Note that 1 cP = 10–3 Pa-s.

[49]. This generalized integral is given by

η =
V

10kBT
∑
i
∑
j

∫ ∞

0

〈
τosij (0)τosij (t)

〉
t0 dt (4)

where the components τosij of the traceless, symmetric part
of the stress tensor are given by

τosij =
τij + τji
2

– δij
1
3

∑
k
τkk
 (5)

where δ is the unit tensor. Note that the factor of 10 in the

denominator of Equation 4 results from assigning weight-

ing factors of 3/3 and 4/3 for each of the six off-diagonal

terms and the three diagonal terms, respectively [37, 38, 50]

(although some authors have argued for an equal weight-

ing [18], which would modify the normalization factor in the

denominator of Equation 4 from 10 to 9). The equivalent

generalization of the Einstein relation is

η =
V

20kBT limt→∞

ddt
∑
i
∑
j

〈∫ t
0

τosij (t′)dt′
〉
t0

(6)

We are not aware of any studies that rigorously quantify

the improvement in precision obtained by using all six terms.

Figure 8, borrowed from Ref. [18], demonstrates that the

average viscosity and fluctuations are nearly identical when

using the three off-diagonal terms or when using six terms.

Therefore, although we recommend including all six terms,

it is typically sufficient to utilize just the three off-diagonal

terms. Regardless, it is important to clearly state which terms

are included when computing viscosity.

Although fluctuations in η are significantly reduced by

including multiple terms from the stress tensor, the key to

Figure 7. Averaging three off-diagonal elements of pressure tensor
improves precision of Green-Kubo viscosity estimate (η). Reproduced

from J. Chem. Phys., 2002, 116(1):209–217, with the permission of AIP

Publishing [19]. Dashed lines represent a single off-diagonal element

of the pressure tensor while solid line is the average of the three

off-diagonal elements. For further details, see Ref. [19].

Figure 8. Green-Kubo viscosity is practically equivalent when averag-
ing all six or just the three off-diagonal pressure tensor elements. Re-

sults are for Lennard-Jones (LJ) fluid (in reduced LJ units, i.e., η∗ = ησ2√mε

and t∗ = t√ εmσ2
, where σ and ε are the respective LJ size and en-

ergy parameters and m is the mass of the LJ particle). Reproduced
from J. Chem. Phys., 131, 246101 (2009), with the permission of AIP

Publishing [18]. The inset focuses on the short-time interval where

the initial plateau is observed. Red line is obtained by averaging the

three off-diagonal elements while the black line is obtained from all

six pressure tensor elements. For further details, see Ref. [18].

improved precision of viscosity estimates is to average several

replicate simulations. For Nreps replicates, the Green-Kubo
equation is

η =
V

10kBTNreps
Nreps∑
n=1

∑
i
∑
j

∫ ∞

0

〈
τosij,n(0)τosij,n(t)

〉
t0 dt (7)
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Figure 9. Einstein approach for viscosity is improved by averaging
three stress tensor terms and 30 replicate runs. Simulations were

performed with Gromacs 2018 for saturated liquid ethane at 137 K

using the TraPPE-UA model [51]. Simulation details: velocity Verlet

integrator [52], 2 fs time-step, 6 fs pressure tensor output frequency,

12 time origins, 1 ns equilibration time, 1 ns production time, 400

molecule system, 1.4 nm non-bonded cut-off distance with analytic

tail corrections, Nosé-Hoover thermostat with time constant of 1 ps

[44], bond-lengths constrained with a linear constraint solver (LINCS)

algorithm [2, 53, 54].

and the Einstein relation becomes

η =
V

20kBTNreps limt→∞

ddt
Nreps∑
n=1

∑
i
∑
j

〈∫ t
0

τosij,n(t′)dt′
〉
t0

(8)

For example, Figure 9 demonstrates that averaging three

stress tensors is not sufficient to obtain a reliable Einstein

slope as t → ∞. By contrast, a near linear trend at high
time is observed by averaging a large number of replicates

(Nreps = 30).
The number of replicates used in the literature varies

widely. In their study of the shear viscosity of alkanes, Payal

and co-workers [29] used 10 replicates, whereas Zhang et
al. [30] performed a systematic investigation of the mini-
mal number of replicates required for convergence. They

observed that a value of 30 to 40 replicates was statisti-

cally equivalent to 100 replicates for their system. However,

the necessary number of replicates depends on the system.

Specifically, the compound, the temperature, the number

of molecules, and the simulation time all influence the opti-

mal number of replicates. We recommend that researchers

plot how η varies with respect to the number of replicates

for a range of 10 to 30 replicates to determine if additional

simulations are needed.

6.2 Viscosity: Green-Kubo
6.2.1 Data analysis

It is imperative to report how the viscosity was estimated

from Equation 1. There are three common methods: average

over a specified time interval, fit the autocorrelation function

to a model and analytically integrate the model fit, or fit the

“running integral” to a model and extrapolate the model to in-

finite time. We discuss each approach below but recommend

the latter methodology as it requires fewer arbitrary user

decisions and is more robust than the other two methods.

Average over time interval

A slightly ambiguous but common practice is to report an

average shear viscosity that is obtained over a specified time

interval. Due to large fluctuations at long times, the initial

plateau of the integral at short times (around 10 to 100 ps)

is typically the region of choice, see Refs. [18, 22]. However,

it is important to explain how this time interval was selected

(e.g., visual inspection, test of convergence, magnitude of fluc-

tuations) and to quantify how much the estimated viscosity

changes if the time interval were modified. For example, in

Figures 7 and 8 the reported viscosity would likely be the aver-

age from approximately 5 to 15 ps and 10 to 25 dimensionless

time units, respectively. Clearly, the estimated viscosity would

vary significantly if the average included long-time data.

Model fit to autocorrelation function

An alternative method is to fit a model to the autocorrelation

function before calculating the “running integral.” The integral

of the model fit can then be evaluated in the limit as t →∞.
This helps to overcome large fluctuations at long times and,

thereby, reduces uncertainties. The primary difficulty is find-

ing a model that can adequately match the autocorrelation

function without introducing bias into the estimate of vis-

cosity. A common function found in the literature is [2, 55]

Sf
ACF
(t)

Sf
ACF
(0)
= (1 – C) cos(ωt) exp (–t/τf )βf + C exp (–t/τs)βs (9)

where C,ω, τf , τs,βf ,βs (and sometimes SfACF(0)) are fitting pa-
rameters. Specifically, ω is the frequency of rapid pressure

oscillations, τf and βf are the time constant and exponent of
fast relaxation in a stretched-exponential approximation, τs
and βs are constants for slow relaxation, C is the pre-factor
that determines the weight between fast and slow relaxation,

Sf
ACF
(t) is the stress autocorrelation function at time t, and

Sf
ACF
(0) is the initial (time-zero) autocorrelation function.

Figure 10, from Ref. [22], demonstrates that Equation 9

has the correct shape to fit the stress autocorrelation func-

tion for this system. However, notice the significant deviation

between the model fit (Sf
ACF
) and the raw simulation output
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Figure 10. Equation 9 provides reliable fit of autocorrelation function.
Reproduced with permission from J. Phys. Chem. A., 2012, 116 (10),

pp 2564–2570. Copyright (2012) ACS Publications [22]. SACF and

Sf
ACF
correspond to the raw autocorrelation function and the fit to

Equation 9, respectively. The red dotted line and blue dashed–dotted

line correspond to the fast and slow autocorrelation components,

respectively, i.e., the first and second terms of Equation 9. The inset

highlights the large long-time fluctuations. For further details, see

Ref. [22].

(SACF) for time less than 0.02 ps and the relatively small devia-
tions in the first two peaks around 0.1 ps. These systematic

deviations in the model fit can lead to significant bias in the

estimated viscosity. One method to overcome this issue is

to place a larger weight on short-time data or to include a

cut-off time beyond which SACF data are not included in the
model fit.

Alternatively, it is sometimes preferable to integrate the

raw SACF simulation output for short time and then integrate
the model fit, Sf

ACF
, to infinite time [23, 56, 57]. The advantage

of this hybrid (combined) integration approach is that the raw

data are used in the time region where small deviations in

the model fit can lead to large biases in η, whereas the model

fit is utilized in the time region where integration of the raw

data does not converge. The hybrid integration approach is

especially preferred when SACF is highly oscillatory, such as
that shown in Figure 7 of Ref. [57], where Equation 9 is likely

inadequate.

The time where the Green-Kubo integration switches from

using SACF to SfACF, referred to as the switch-time (ts), should
be after the “fast” autocorrelation component has dissipated

(the first term in Equation 9 and the red dotted line in Figure

10). As this time depends on the system and user judgment,

examples of ts in the literature range widely. For example,
ts = 5 ps in Refs. [23, 56] while the switch-time value is only

0.015 ps in Ref. [57].

A simpler exponential decay function than Equation 9

can be used with the hybrid integration approach because

the model does not need to fit the autocorrelation function

over the entire time range, just for t > ts. For example, it is
common to fit SACF values for t > ts to a single exponential
term, e.g., Sf

ACF
= exp(–(t/τ )β ) [56], Sf

ACF
= exp(–t/τ ) [23], or

Sf
ACF
= a exp(–t/b) [57], where τ , β, a, and b are fitting parame-

ters.

Similar to the methods discussed previously, it is impor-

tant to quantify the variability in viscosity that arises from

the model fit. For example, we recommend bootstrapping

the uncertainties by repeating the model fit for hundreds of

randomly selected subsets of SACF. If the hybrid integration
approach is utilized, it is important to investigate and report

how sensitive the final viscosity value is to the switch-time

and/or to discuss how ts is chosen. Furthermore, if a weight-
ing function or cut-off time is implemented when fitting Sf

ACF
,

the impact of these parameters should be discussed.

Model fit to running integral

The method we recommend for obtaining viscosity from EMD

is to fit an analytic function directly to the “running integral”.

The primary advantage of fitting a model to the “running

integral” over the previous approach of fitting a model to the

autocorrelation function (i.e., Equation 9) is that uncertainties

in the model fit do not propagate through the integration.

For example, Refs. [58] and [30] recommend fitting the

“running integral” to a double-exponential function

η(t) = Aατ1 (1 – exp (–t/τ1)) + A(1 – α)τ2 (1 – exp (–t/τ2)) (10)

where A,α, τ1, and τ2 are fitting parameters. Note that the
“true” estimate of η is obtained as t → ∞, i.e., η∞ = Aατ1 +A(1 – α)τ2.
Ref. [50] proposes an alternative model by integrating the

slow stretched-exponential function (second term in Equation

9) which results in the expression

η(t) = η∞(1 – exp(–(t/τs)βs )) (11)

where η∞, τs, and βs are fitting parameters that relate to the
infinite-time viscosity, decay time, and the exponent of slow

relaxation.

We recommend the use of Equation 10 as we have found

it to be a more flexible fitting model, i.e., the optimized sum-

squared-error is typically lower than that of Equation 11. That

being said, the η∞ estimates obtained with Equations 10

and 11 are quite similar. Deviations in η∞ between the two

equations are generally less than 1% for both low (gas phase)

and high (compressed liquid phase) viscosities. Regardless

of whether Equation 10 or 11 is implemented, it is important
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to include a description of how the fit is performed, e.g., the

objective function, range of data included.

Ref. [30] recommends that the data be weighted by the

inverse of the standard deviation (σ) from the replicate simu-

lation values. As σ increases significantly with respect to time,

Ref. [30] fit σ to the model Atb, where t is time and A and b
are fitting parameters. This fit is used to develop a weighting

model of the form w ∝ t–b, where w is the weight and b is the
weighting exponent obtained from the σ model fit. If such

a model is utilized, the resulting estimate of η may depend

strongly on b, the weighting exponent.
For example, Figure 11, borrowed from Ref. [30], com-

pares η for two different values of b in the weighting model,
namely, when b is a predetermined value of 0.5 and when b
is obtained from the σ fit. Note that Ref. [58] recommends

a value of b = 2. Ref. [30] demonstrates that for b = 2 the
estimated value of η for an ionic liquid ([BMIM][Tf2N]) at 350

K is approximately 11 × 10–3 Pa-s (compared to ≈ 19 × 10–3

Pa-s in the bottom panel of Figure 11).

For these reasons, we recommend that the author quanti-

fies the uncertainty in the estimated viscosity due to the value

of b. Propagating the uncertainty in η from b can be accom-
plished by implementing a two-step bootstrap method. First,

a distribution of b values are obtained by bootstrapping the σ
model fit. Second, a distribution of η values are computed by

fitting Equation 10 with each value of b from the distribution
generated in the previous step.

Ref. [30] also suggests that a cut-off time be implemented

to improve the fit. They provide a heuristic that the cut-off

time correspond to when the standard deviation is 40% of the

plateau value. Regardless of how the cut-off is determined, it

is important to quantify the degree to which the estimated

viscosity depends on this parameter. For example, Zhang et
al. reported that the viscosity decreased by 0.8% and 6.1%
when using a cut-off time corresponding to a standard devia-

tion of 30% or 20% the plateau value, respectively. However,

since the magnitude of variability depends strongly on the

system, we recommend that the author quantify the cut-off

time dependence.

Furthermore, Ref. [30] recommends excluding short-time

data from the fitting procedure. In Figure 12, borrowed from

Ref. [30], we observe large oscillations at very short times,

ca. t < 2 ps. A weighting function with a t–b form assigns an
inappropriately large weight to these short-time data points.

Therefore, it is important to exclude data in this short-time

region from the model fitting.

Figure 11. The Green-Kubo viscosity estimate depends on the expo-
nent of the weighting model, b, which is approximately 0.5 for certain
systems. Note that b = 0.52 for ethanol at 298 K, top panel, while
b is between 0.60 to 0.73 for [BMIM][Tf2N] at 350 K, bottom panel.
Reprinted with permission from J. Chem. Theory Comput., 2015, 11

(8), pp 3537–3546. Copyright (2015) American Chemical Society. For

further details, see Ref. [30]. Note that 1 cP = 10–3 Pa-s.

6.3 Viscosity: Einstein
6.3.1 Data analysis

Since the Einstein relation is valid in the limit of infinite time,

in theory the slope should only be computed at long time.

Unfortunately, by contrast with self-diffusivity, the long-time

trend from a single run is often non-linear (recall Figure 9).

Replicate simulations are typically necessary to obtain a well-

behaved long-time trend. For example, Figure 9 demonstrates

that the replicate-averaged Einstein integral is approximately

linear over a large time interval (using 30 replicate simula-

tions). Therefore, if sufficient replicates are used it is possible

to compute a reliable slope (viscosity) at the long-time limit.

However, as observed in the inset of Figure 9, the Einstein

integral becomes nearly linear for a single simulation after a

few ps. For these reasons, it is common to fit the slope from

a single simulation over an intermediate time interval, e.g.,
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Figure 12. Green-Kubo “running integral” demonstrates large fluctu-
ations at very short time. Reprinted with permission from J. Chem.

Theory Comput., 2015, 11 (8), pp 3537–3546. Copyright (2015) Ameri-

can Chemical Society. For further details, see Ref. [30]. Note that 1

cP = 10–3 Pa-s.

5 to 50 ps. We only recommend calculating the slope from

an intermediate time interval if performing a large number

of replicate simulations is too computationally expensive. As

mentioned in Sec. 6, the Einstein approach is likely preferred

over the Green-Kubo approach only in this scenario. With a

single simulation (or a small number of replicate simulations),

we recommend that the author explain why the slope was

calculated using a given intermediate time interval and how

much variability is introduced if a different region is selected.

For example, Figure 13 helps visualize the uncertainty in η

due to the time interval used to compute the slope. Panels

a) and b) are obtained from the respective single and 30

replicate simulation results presented previously in Figure 9.

Panel a) demonstrates that determining η from a single run

depends strongly on the time interval, while Panel b) shows

that η is much less dependent on the time interval when

obtained from 30 replicate simulations.

Using the slope for an intermediate time interval is less

theoretically rigorous and depends strongly on user judgment.

Therefore, when computationally feasible, we recommend

averaging the Einstein integral for multiple replicate simula-

tions, i.e., Equation 8. The number of replicates needed has

not been rigorously investigated as it has for the Green-Kubo

approach. For this reason, we recommend creating a plot of

viscosity with respect to number of replicates (see Figure 3)

to determine when sufficient replicates have been simulated.

It is our experience that the necessary number of replicates

is similar to that for Green-Kubo.

Similar to the Green-Kubo recommendation, we also rec-

ommend bootstrapping the uncertainty for the Einstein ap-

proach (see Sec. 4.2.3). This is done by randomly sampling

Figure 13. Einstein viscosity is highly sensitive to the time interval
used to compute the slope. For example, “start time” = 50 ps and

“end time” = 200 ps computes the slope from t = 50 to 200 ps of
V

2kBTNreps
Nreps∑
n=1

〈∫ t
0

ταβ,n(t′)dt′
〉
t0
. Panels a) and b) correspond to a

single simulation and 30 replicate simulations, respectively. The same

color scale is used in both panels, but Panel b) also includes a zoomed-

in color bar. Simulation data are the same as those presented in

Figure 9.

which replicates are included in the replicate-averaged Ein-

stein integral, calculating the viscosity from the slope, and

producing a distribution of these viscosity values from hun-

dreds or thousands of different random replicate sets.

In addition, we recommend bootstrapping the time in-
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terval uncertainty, i.e., computing the slope for hundred or

thousands of different time intervals. This approach is espe-

cially important if analyzing intermediate time intervals from

a single simulation. For example, from Figure 13 Panel a)

we would report the distribution of η values obtained from

randomly selected time intervals with a “start time” greater

than 5 ps and an “end time” less than 50 ps.

6.4 Viscosity: Special topics
6.4.1 Considerations for cut-off length

The GROMACS manual reports that viscosity “is very depen-

dent on the treatment of the electrostatics. Using a (short)

cut-off results in large noise on the off-diagonal pressure ele-

ments, which can increase the calculated viscosity by an order

of magnitude.” [2, 19] Therefore, when computing viscosities

for systems with electrostatics, it is extremely important to

investigate the effect of cut-off distance. This can be done

by performing simulations with variable Coulombic cut-off

lengths, typically 0.9, 1.2, and 1.4 nm. We also recommend in-

vestigating whether the estimated viscosity depends strongly

on the algorithm for computing the electrostatics, e.g., parti-

cle mesh Ewald. [2, 59]

Similarly, we suspect that the viscosity also depends on the

van der Waals cut-off length and/or if a cut-and-shift, force-

switch, or truncated (with or without tail corrections) potential

is implemented [2, 60, 61]. For these reasons, we strongly

recommend reporting how the non-bonded (electrostatics

and van der Waals) interactions are computed.

7 Conclusions
Molecular simulation is commonly used to predict transport

properties. However, without careful simulation design and

acute analysis, results may not be meaningful. This work out-

lines the best practices in the design and analysis of equilib-

rium molecular dynamics simulations for self-diffusivity and

viscosity prediction. It is worth noting that non-equilibrium

molecular dynamics simulations are highly preferred for mod-

erate to high viscosity materials (more than 20 × 10–3 to 50 ×
10

–3
Pa-s). We anticipate future studies discussing best prac-

tices for NEMD techniques or additional transport properties.

In liquid systems, we suggest production simulations use

either the NVE ensemble or the NVT ensemble, after judi-
ciously selecting the thermostat and coupling strength [22,

23]. By contrast, we strongly discourage the use of the NPT en-
semble due to the potential interference of the barostat with

the system dynamics. We recommend averaging over mul-

tiple time origins to improve precision of the self-diffusivity

and viscosity estimates. To ensure simulations are run long

enough for the system dynamics to be fully emulated, we

recommend the user run a series of simulations at differing

lengths, and observe deviations in estimated self-diffusivity

or viscosity with changes in simulation time. In addition,

the degree of configuration space exploration can be esti-

mated by calculating the mean squared displacements of

the molecules and comparing to the radius of gyration and

box length. The root MSD should be greater than the radius

of gyration, and ideally, on the order of the box length. We

also recommend running multiple independent simulations

to more thoroughly sample the possible states. Measures

should be taken to rigorously estimate the uncertainty of the

self-diffusivity and viscosity prediction, where we recommend

bootstrapping the replicate simulation results.

For self-diffusivity, we recommend employing the Einstein

method. We recommend that the atomic positions be output

1000 times over a production run, however, the user can

choose to output less frequently to reduce file size or more

frequently for potentially increased accuracy. We discuss

two methods to correct for system size effects, which are

significant in self-diffusivity calculations. In post-simulation

analysis, we recommend improving precision by averaging

the velocity autocorrelation function over all molecules and

the diagonal self-diffusivity dimensional components. Some

judgment by the user is necessary to decide where the slope

is measured for the Einstein approach, and it is important

that the user communicate the approach used and justify

how the decision was made.

For viscosity, we recommend the Green-Kubo approach,

although the Einstein method may be preferred with certain

systems, i.e., if replicate simulations are too computation-

ally expensive. As a collective property, viscosity requires

significantly more data and replicates than self-diffusivity. We

recommend outputting the stress tensor components every

5 to 10 fs. The number of replicates a system needs can vary

greatly depending on the compound, number of molecules,

and temperature. The simulation length of each trajectory

should typically be at least an order ofmagnitude greater than

the Green-Kubo integral plateau time. Due to their slower

dynamics, more viscous materials require longer simulation

times. System size seems to be of little impact on viscosity

prediction (see Figures 5-6), however, we still recommend that

the user justify their choice of system size by plotting N–1/3
versus predicted viscosity. In post-simulation data processing,

we recommend averaging over either the three off-diagonal

or all six independent components of the stress tensor to

enhance precision. We recommend fitting the Green-Kubo

running integral to a double-exponential function and extrap-

olating to the infinite-time limit [30].
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